【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸.圖中點A表示﹣10,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距28個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话耄罅⒖袒謴?fù)原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運動的時間為t秒.問:

1)動點P從點A運動至C點需要多少時間?

2PQ兩點相遇時,求出相遇點M所對應(yīng)的數(shù)是多少;

3)求當(dāng)t為何值時,P、O兩點在數(shù)軸上相距的長度與QB兩點在數(shù)軸上相距的長度相等.

【答案】119秒;(2;(3t的值為2、6.5、1117

【解析】

1)根據(jù)路程除以速度等于時間,可得答案;

2)根據(jù)相遇時P,Q的時間相等,可得方程,根據(jù)解方程,可得答案;

3)根據(jù)POBQ的時間相等,可得方程,根據(jù)解方程,可得答案.

解:(1)點P運動至點C時,所需時間t10÷2+10÷1+8÷219(秒),

2)由題可知,PQ兩點相遇在線段OB上于M處,設(shè)OMx

10÷2+x÷18÷1+10x÷2,

解得x

故相遇點M所對應(yīng)的數(shù)是

3PO兩點在數(shù)軸上相距的長度與QB兩點在數(shù)軸上相距的長度相等有4種可能:

①動點QCB上,動點PAO上,則:8t102t,解得:t2

②動點QCB上,動點POB上,則:8t=(t5×1,解得:t6.5

③動點QBO上,動點POB上,則:2t8)=(t5×1,解得:t11

④動點QOA上,動點PBC上,則:10+2t15)=t13+10,解得:t17

綜上所述:t的值為2、6.51117

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知二次函數(shù)y=ax2+bx+cyx的部分對應(yīng)值如下表;

x

-1

0

1

3

y

-3

1

3

1

下列結(jié)論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當(dāng)xl時,函數(shù)值yx 的增大而增大;④方程ax2+bx+c=0有一個根大于4.其中正確的結(jié)論有(

A. 4個B. 1個C. 3個D. 2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線L:y=-x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

(1)求A、B兩點的坐標(biāo);

(2)△COM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時△COM≌△AOB,并求此時M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時,在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C

1)仿照表示燈塔方位的方法,分別畫出表示客輪B和海島C方向的射線OB、OC(不寫作法);

2)若圖中有一艘漁船D,且∠AOD的補角是它的余角的3倍,求出∠AOD的度數(shù);

3)畫出表示漁船D方向的射線OD,則漁船D在貨輪O  (寫出方位角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

如圖,點E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將30°的直角三角尺ABC繞直角頂點A逆時針旋轉(zhuǎn)到ADE的位置,使B點的對應(yīng)點D落在BC邊上,連接EB、EC,則下列結(jié)論:①∠DAC=DCA;EDAC的垂直平分線;③∠BED=30°;ED=2AB.其中正確的是( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:

1;

2;

3;

4;

……

根據(jù)上述等式的規(guī)律,解答下列問題:

1)寫出第5個等式:________________;

2)寫出第個等式:__________________(用含有的代數(shù)式表示);

3)應(yīng)用你發(fā)現(xiàn)的規(guī)律,計算:。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC中,BF是AC邊上中線,點D在BF上,連接AD,在AD的右側(cè)作等邊△ADE,連接EF,當(dāng)△AEF周長最小時,∠CFE的大小是( 。

A. 30° B. 45° C. 60° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角ABC內(nèi)接于O,若O的半徑為6,sinA=,求BC的長.

【答案】BC=8.

【解析】試題分析:通過作輔助線構(gòu)成直角三角形,再利用三角函數(shù)知識進(jìn)行求解.

試題解析:作⊙O的直徑CD,連接BD,則CD=2×6=12.

點睛:直徑所對的圓周角是直角.

型】解答
結(jié)束】
22

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(n,﹣2)兩點.過點BBCx軸,垂足為C,且SABC=5.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點,且y1≥y2,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案