【題目】如圖,在中,,過(guò)點(diǎn)的直線,邊上一點(diǎn),過(guò)點(diǎn),交直線,垂足為,連接.

1)求證:;

2)當(dāng)中點(diǎn)時(shí),四邊形是什么特殊四邊形?說(shuō)明你的理由;

3)若中點(diǎn),則當(dāng)________時(shí),四邊形是正方形

【答案】1)證明見(jiàn)解析(2)四邊形是菱形.理由見(jiàn)解析(3)當(dāng)時(shí),四邊形是正方形.

【解析】

1)先證出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;
2)先證明出四邊形BECD是平行四邊形,再求出CD=BD,根據(jù)菱形的判定推出即可;
3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.

1)證明:∵DEBC,

∴∠DFB=90°

∵∠ACB=90°,

∴∠ACB=DFB

ACDE,

MNAB,即CEAD,

∴四邊形ADEC是平行四邊形,

CE=AD;

2)解:四邊形BECD是菱形,

理由是:∵DAB中點(diǎn),

AD=BD,

CE=AD,

BD=CE,

BDCE

∴四邊形BECD是平行四邊形,

∵∠ACB=90°,DAB中點(diǎn),

CD=BD(直角三角形斜邊上的中線等于斜邊的一半),

四邊形BECD是菱形;

3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由是:

∵∠ACB=90°,∠A=45°,

∴∠ABC=A=45°,

AC=BC,

DBA中點(diǎn),

CDAB,

∴∠CDB=90°

∵四邊形BECD是菱形,

∴菱形BECD是正方形,

即當(dāng)∠A=45°時(shí),四邊形BECD是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知、、是數(shù)軸上三點(diǎn),點(diǎn)表示的數(shù)為3,。

1)數(shù)軸上點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為。

2)動(dòng)點(diǎn)、分別從、同時(shí)出發(fā),點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),的中點(diǎn),點(diǎn)在線段上,且,設(shè)運(yùn)動(dòng)時(shí)間為)秒。

①求數(shù)軸上、表示的數(shù)(用含的式子表示);

為何值時(shí),原點(diǎn)恰好是線段的中點(diǎn);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以∠AOB的頂點(diǎn)O為端點(diǎn)引射線OP,使∠AOP:∠BOP=32,若∠AOB=20°,則∠AOP的度數(shù)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)就為“奇巧數(shù),如,因此這三個(gè)數(shù)都是奇巧數(shù)。

都是奇巧數(shù)嗎?為什么?

設(shè)這兩個(gè)連續(xù)偶數(shù)為(其中為正整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的奇巧數(shù)是的倍數(shù)嗎?為什么?

研究發(fā)現(xiàn):任意兩個(gè)連續(xù)“奇巧數(shù)”之差是同一個(gè)數(shù),請(qǐng)給出驗(yàn)證。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開展“我最喜愛(ài)的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.

請(qǐng)結(jié)合以上信息解答下列問(wèn)題:

(1)m= ;

(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;

(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;

(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有 名學(xué)生最喜愛(ài)足球活動(dòng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=mx+ny=mnxmn≠0),在同一平面直角坐標(biāo)系的圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A(2,2)是雙曲線上一點(diǎn),點(diǎn)B是雙曲線上位于點(diǎn)A右下方的另一點(diǎn),C是x軸上的點(diǎn),且△ABC是以∠B為直角的等腰直角三角形,則點(diǎn)B的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )

A. 54 B. 60 C. 72 D. 66

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題,求的立方根.華羅庚脫口而出,你知道怎樣迅速準(zhǔn)確地計(jì)算出結(jié)果的嗎?請(qǐng)按照下面的問(wèn)題試一試:

1)由,確定的立方根是 位數(shù);

2)由的個(gè)位數(shù)是確定的立方根的個(gè)位數(shù)是 ;

3)如果劃去后面的三位得到數(shù),,由此能確定的立方根的十位數(shù)是 ;所以的立方根是

4)用類似的方法,請(qǐng)說(shuō)出的立方根是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案