(2010•南寧)如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點(diǎn)D,AD交OC于點(diǎn)E,則∠AEO的度數(shù)是    度.
【答案】分析:欲求∠AEO,需先求出∠OAD的度數(shù);OD平分直角∠COB,易得∠BOD=45°;根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系,即可求得∠OAD的度數(shù),由此得解.
解答:解:∵OD平分∠BOC,且∠BOC=90°,
∴∠BOD=∠BOC=45°;
∴∠OAD=∠BOD=22.5°;
Rt△AEO中,∠AOE=90°,
則∠AEO=90°-∠OAE=67.5°.
點(diǎn)評(píng):此題主要考查了角平分線的性質(zhì)及圓周角定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個(gè)單位長度,再向上平移1個(gè)單位長度,得出拋物線l1,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱.點(diǎn)A,O,B分別是拋物線l1,l2與x軸的交點(diǎn),D,C分別是拋物線l1,l2的頂點(diǎn),線段CD交y軸于點(diǎn)E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設(shè)P使拋物線l1上與D,O兩點(diǎn)不重合的任意一點(diǎn),Q點(diǎn)是P點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),試判斷以P,Q,C,D為頂點(diǎn)的四邊形是什么特殊的四邊形?請(qǐng)說明理由.
(3)在拋物線l1上是否存在點(diǎn)M,使得S△ABM=S四邊形AOED?如果存在,求出M點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西南寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個(gè)單位長度,再向上平移1個(gè)單位長度,得出拋物線l1,拋物線l2與拋物線l1關(guān)于y軸對(duì)稱.點(diǎn)A,O,B分別是拋物線l1,l2與x軸的交點(diǎn),D,C分別是拋物線l1,l2的頂點(diǎn),線段CD交y軸于點(diǎn)E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設(shè)P使拋物線l1上與D,O兩點(diǎn)不重合的任意一點(diǎn),Q點(diǎn)是P點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),試判斷以P,Q,C,D為頂點(diǎn)的四邊形是什么特殊的四邊形?請(qǐng)說明理由.
(3)在拋物線l1上是否存在點(diǎn)M,使得S△ABM=S四邊形AOED?如果存在,求出M點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西南寧市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•南寧)如圖所示,點(diǎn)A1,A2,A3在x軸上,且OA1=A1A2=A2A3,分別過點(diǎn)A1,A2,A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點(diǎn)B1,B2,B3,分別過點(diǎn)B1,B2,B3作x軸的平行線,分別于y軸交于點(diǎn)C1,C2,C3,連接OB1,OB2,OB3,那么圖中陰影部分的面積之和為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西南寧市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•南寧)如圖,從地面豎直向上拋出一個(gè)小球,小球的高度h(單位:m)與小球運(yùn)動(dòng)時(shí)間t(單位:s)之間的關(guān)系式為h=30t-5t2,那么小球從拋出至回落到地面所需要的時(shí)間是( )

A.6s
B.4s
C.3s
D.2s

查看答案和解析>>

同步練習(xí)冊(cè)答案