(2010•麗江)如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、B的坐標分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關系式.

【答案】分析:(1)由旋轉的性質(zhì),將矩形OABC繞點O順時針方向旋轉90°后得到矩形OA1B1C1
(2)由題意設直線BC1的函數(shù)關系式為:y=kx+b,四邊形OABC是矩形,點A、B的坐標分別為A(-4,0)、B(-4,2),旋轉后C1的坐標為(2,0),已知B,C1兩點坐標根據(jù)待定系數(shù)法求出直線的解析式.
解答:解:(1)如下圖:

(2)設直線BC1的函數(shù)關系式為:y=kx+b,
∵四邊形OABC是矩形,點A、B的坐標分別為A(-4,0)、B(-4,2),
又∵將矩形OABC繞點O順時針方向旋轉90°后得到矩形OA1B1C1
∴旋轉后C1的坐標為(2,0),又∵B(-4,2)把兩點代入解析式得,
,
解得,k=-,b=,
∴直線BC1的函數(shù)關系式為:y=-x+
點評:此題考查旋轉的性質(zhì)及用待定系數(shù)法求函數(shù)的解析式,關鍵是找旋轉后點的坐標,是一道比較基礎的題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、B的坐標分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省臨滄中考數(shù)學試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,點A、B的坐標分別為A(-4,0)、B(-4,2).
(1)現(xiàn)將矩形OABC繞點O順時針方向旋轉90°后得到矩形OA1B1C1,請畫出矩形OA1B1C1;
(2)畫出直線BC1,并求直線BC1的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省麗江中考數(shù)學試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標分別是A(-1,0)、B(4,0),點C在y軸的負半軸上,且∠ACB=90°
(1)求點C的坐標;
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省迪慶中考數(shù)學試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標分別是A(-1,0)、B(4,0),點C在y軸的負半軸上,且∠ACB=90°
(1)求點C的坐標;
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年云南省大理中考數(shù)學試卷(解析版) 題型:解答題

(2010•麗江)如圖,在平面直角示系中,A、B兩點的坐標分別是A(-1,0)、B(4,0),點C在y軸的負半軸上,且∠ACB=90°
(1)求點C的坐標;
(2)求經(jīng)過A、B、C三點的拋物線的解析式;
(3)直線l⊥x軸,若直線l由點A開始沿x軸正方向以每秒1個單位的速度勻速向右平移,設運動時間為t(0≤t≤5)秒,運動過程中直線l在△ABC中所掃過的面積為S,求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案