【題目】現(xiàn)定義兩種運(yùn)算“⊕”和“※”.對于任意兩個整數(shù)a、b,

都有:a⊕b=a+b﹣1,a※b=ab+2.

(1)分別求出 -3⊕2 的值和 4 ※(-1)的值;

(2)試求(-3⊕2)※ [4 ※(-1)]的值.

【答案】(1)-2;(2)6

【解析】

(1)根據(jù)規(guī)定的運(yùn)算順序與計(jì)算的方法,直接計(jì)算即可

(2)先根據(jù)新定義分別得到-3⊕2,4 ※(-1)的值,再根據(jù)新定義即可求解.

解:(1)-3⊕2=-3+2-1= -2 , 4 ※(-1)= 4×(-1)+2= -2,

(2)(-3⊕2)※ [4 ※(-1)]=(-2)×(-2)+2= 6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線y(m +1)2x2+x+m21經(jīng)過原點(diǎn),那么m的值等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育課上,老師測量跳遠(yuǎn)成績的依據(jù)是( 。
A.平行線間的距離相等
B.兩點(diǎn)之間,線段最短
C.垂線段最短
D.兩點(diǎn)確定一條直線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a是最大的負(fù)整數(shù),|b|=2且b<0,則a﹣b的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,將二次函數(shù)的圖象M沿x軸翻折,把所得到的圖象向右平移2個單位長度后再向上平移8個單位長度,得到二次函數(shù)圖象N

1)求N的函數(shù)表達(dá)式;

2)設(shè)點(diǎn)Pm,n)是以點(diǎn)C1,4)為圓心、1為半徑的圓上一動點(diǎn),二次函數(shù)的圖象Mx軸相交于兩點(diǎn)A、B,求的最大值;

3)若一個點(diǎn)的橫坐標(biāo)與縱坐標(biāo)均為整數(shù),則該點(diǎn)稱為整點(diǎn).求MN所圍成封閉圖形內(nèi)(包括邊界)整點(diǎn)的個數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把命題“平行于同一條直線的兩條直線互相平行”改寫成“如果…,那么…”的形式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AC=BC=2,D是邊AB上一動點(diǎn)(AB兩點(diǎn)除外),將△CAD繞點(diǎn)C按逆時針方向旋轉(zhuǎn)角α得到△CEF,其中點(diǎn)E是點(diǎn)A的對應(yīng)點(diǎn),點(diǎn)F是點(diǎn)D的對應(yīng)點(diǎn)

1)如圖1,當(dāng)α=90°時,G是邊AB上一點(diǎn),且BG=AD,連接GF.求證:GFAC;

2)如圖2,當(dāng)90°≤α≤180°時,AEDF相交于點(diǎn)M

①當(dāng)點(diǎn)M與點(diǎn)C、D不重合時,連接CM,求∠CMD的度數(shù);

②設(shè)D為邊AB的中點(diǎn),當(dāng)α從90°變化到180°時,求點(diǎn)M運(yùn)動的路徑長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知∠AOB=α,在射線OA、OB上分別取點(diǎn)OA1=OB1,連結(jié)A1B1,在B1A1、B1B上分別取點(diǎn)A2、B2,使B1B2=B1A2,連結(jié)A2B2按此規(guī)律下去,記∠A2B1 B2=θ1,A3B2B3=θ2,An+1Bn Bn+1=θn,則θ2016θ2015的值為(。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:

甲:79,86,82,85,83

乙:88,79,90,81,72

回答下列問題:

(1)甲成績的平均數(shù)是 ,乙成績的平均數(shù)是 ;

(2)經(jīng)計(jì)算知=6,=42.你認(rèn)為選拔誰參加比賽更合適,說明理由;

(3)如果從甲、乙兩人5次的成績中各隨機(jī)抽取一次成績進(jìn)行分析,求抽到的兩個人的成績都大于80分的概率

查看答案和解析>>

同步練習(xí)冊答案