已知∠MAN,AC平分∠MAN.
(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)在圖3中:①∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD=______AC(用含α的三角函數(shù)表示),并給出證明.

【答案】分析:(1)由角平分線的性質(zhì)可證∠ACB=∠ACD=30°,又由直角三角形的性質(zhì),得AB+AD=AC.
(2)根據(jù)角平分線的性質(zhì)過點(diǎn)C分別作AM,AN的垂線,垂足分別為E,F(xiàn),可證AE+AF=AC,只需證AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF.
(3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cosAC.
解答:(1)證明:∵AC平分∠MAN,∠MAN=120°,
∴∠CAB=∠CAD=60°,
∵∠ABC=∠ADC=90°,
∴∠ACB=∠ACD=30°,
∴AB=AD=AC,
∴AB+AD=AC.

(2)解:成立.
證法一:如圖,過點(diǎn)C分別作AM,AN的垂線,垂足分別為E,F(xiàn),
∵AC平分∠MAN,
∴CE=CF,
∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,
∴∠CDE=∠ABC,
∵∠CED=∠CFB=90°,
∴△CED≌△CFB,
∴ED=FB,
∴AB+AD=AF+BF+AE-ED=AF+AE,由(1)知AF+AE=AC,
∴AB+AD=AC,
證法二:如圖,在AN上截取AG=AC,連接CG,
∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG,
∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,
∴∠CBG=∠ADC,
∴△CBG≌△CDA,
∴BG=AD,
∴AB+AD=AB+BG=AG=AC;

(3)證明:由(2)知,ED=BF,AE=AF,
在Rt△AFC中,cos∠CAF=,
即cos,
∴AF=ACcos,
∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=2cosAC.
把α=60°,代入得AB+AD=AC.
點(diǎn)評(píng):本題綜合考查了角平分線的性質(zhì),解直角三角形,以及由特殊到一般的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知∠MAN,AC平分∠MAN.
(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;
(3)在圖3中:①∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD=
 
AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD=
 
AC(用含α的三角函數(shù)表示),并給出證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知∠MAN,AC平分∠MAN.
(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北黃陂北片學(xué)校八年級(jí)上第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知∠MAN,AC平分∠MAN。

⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°求證:AB+AD=AC;
⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇東臺(tái)創(chuàng)新學(xué)校九年級(jí)上學(xué)期第二次階段測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

已知∠MAN,AC平分∠MAN.

(1)在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,我們可得結(jié)論:AB+AD=AC;

在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則上面的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

【解】

(2)在圖3中:(只要填空,不需要證明).

①若∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD=      AC;

②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD=        AC(用含α的三角函數(shù)表示)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖北黃陂北片學(xué)校八年級(jí)上第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知∠MAN,AC平分∠MAN。

⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°求證:AB+AD=AC;

⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由;

 

查看答案和解析>>

同步練習(xí)冊(cè)答案