如圖,在△ABC中,M是BC邊的中點(diǎn),AP是∠BAC的平分線,BP⊥AP于點(diǎn)P. 若AB=12,AC=22,則MP的長(zhǎng)為( )

A.3                B.4                C.5                D.6

 

【答案】

C

【解析】

試題分析:延長(zhǎng)BP交AC于N,利用角邊角定理求證△ABP≌△ANP,再利用M是BC中點(diǎn),求證PM是△BNC的中位線,即可求出MP的長(zhǎng).

延長(zhǎng)BP交AC于N

∵AP是∠BAC的角平分線,BP⊥AP于P,

∴∠BAP=∠NAP,∠APB=∠APN=90°,

∴△ABP≌△ANP(ASA),

∴AN=AB=12,BP=PN,

∴CN=AC-AN=22-12=10,

∵BP=PN,BM=CM,

∴PM是△BNC的中位線,

∴PM=CN=5.

故選C.

考點(diǎn):全等三角形的判定與性質(zhì),角平分線的性質(zhì),三角形中位線定理

點(diǎn)評(píng):全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案