【題目】如圖,矩形ABCD,過點B作BE∥AC交DC的延長線于點E.過點D作DH⊥BE于H,G為AC中點,連接GH.
(1)求證:BE=AC.
(2)判斷GH與BE的數(shù)量關(guān)系并證明.
【答案】(1)證明見解析;(2)GH=BE.
【解析】
(1)由題意根據(jù)矩形的性質(zhì)得出AB∥CD,根據(jù)平行四邊形的判定得出四邊形ABEC是平行四邊形,即可得出答案;
(2)根據(jù)題意連接BD,根據(jù)矩形的性質(zhì)得出AC=BD,求出G為BD的中點,根據(jù)直角三角形斜邊上的中線性質(zhì)得出GH=BD即可.
解:(1)證明:∵四邊形ABCD是矩形,
∴AB∥CD,
∵AC∥BE,
∴四邊形ABEC是平行四邊形,
∴BE=AC;
(2)GH=BE,
證明:連接BD,
∵四邊形ABCD是矩形,G為AC的中點,
∴G為BD的中點,AC=BD,
∵DH⊥BE,即∠DHB=90°,
∴GH=BD,
∵AC=BD,AC═BE,
∴GH=BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系xOy中,函數(shù)y=(n≠0,x>0)的圖象過點A(3,2),與直線l:y=kx+b交于點C,直線l與y軸交于點B(0,﹣1).
(1)求n、b的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記函數(shù)y=(n≠0,x>0)的圖象在點A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過點(2,0)時,直接寫出區(qū)域W內(nèi)的整點個數(shù),并寫出區(qū)域W內(nèi)的整點的坐標(biāo);
②若區(qū)域W內(nèi)的整點不少于5個,結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,對稱軸與軸交于點,點,點,點是平面內(nèi)一動點,且滿足,是線段的中點,連結(jié).則線段的最大值是( ).
A.3B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的弦,AC=6,點B是⊙O上的一個動點,且∠ABC=60°,若點M、N分別是AC、BC的中點,則MN的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面上存在點P、點M與線段AB.若線段AB上存在一點Q,使得點M在以PQ為直徑的圓上,則稱點M為點P與線段AB的共圓點.
已知點P(0,1),點A(﹣2,﹣1),點B(2,﹣1).
(1)在點O(0,0),C(﹣2,1),D(3,0)中,可以成為點P與線段AB的共圓點的是 ;
(2)點K為x軸上一點,若點K為點P與線段AB的共圓點,請求出點K橫坐標(biāo)xK的取值范圍;
(3)已知點M(m,﹣1),若直線y=x+3上存在點P與線段AM的共圓點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是以點O為圓心,AB為直徑的半圓上的動點(不與點A,B重合),AB=6cm,過點C作CD⊥AB于點D,E是CD的中點,連接AE并延長交于點F,連接FD.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AC,CD,FD的長度之間的關(guān)系進(jìn)行了探究.
下面是小騰的探究過程,請補充完整:
(1)對于點C在上的不同位置,畫圖、測量,得到了線段AC,CD,FD的長度的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | |
AC/cm | 0.1 | 0.5 | 1.0 | 1.9 | 2.6 | 3.2 | 4.2 | 4.9 |
CD/cm | 0.1 | 0.5 | 1.0 | 1.8 | 2.2 | 2.5 | 2.3 | 1.0 |
FD/cm | 0.2 | 1.0 | 1.8 | 2.8 | 3.0 | 2.7 | 1.8 | 0.5 |
在AC,CD,FD的長度這三個量中,確定 的長度是自變量, 的長度和 的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解答問題:當(dāng)CD>DF時,AC的長度的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y1=kx2+ax+a的圖象與x軸交于點A,B(點A在點B的左側(cè)),函數(shù)y2=kx2+bx+b,的圖象與x軸交于點C,D(點C在點D的左側(cè)),其中k≠0,a≠b.
(1)求證:函數(shù)y1與y2的圖象交點落在一條定直線上;
(2)若AB=CD,求a,b和k應(yīng)滿足的關(guān)系式;
(3)是否存在函數(shù)y1和y2,使得B,C為線段AD的三等分點?若存在,求的值,若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com