如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點D,過點D的切線分別交AB、AC的延長線與點E、F.

(1)求證:AF⊥EF.
(2)小強同學通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強同學證明這一結論.
(1)首先連接OD,由EF是⊙O的切線,可得OD⊥EF,由∠BAC的平行線交⊙O與點D,易證得OD⊥BC,即可得BC∥EF,由AB為直徑,根據(jù)直徑所對的圓周角是直角,可得AC⊥BC,繼而證得AF⊥EF。
(2)首先連接BD并延長,交AF的延長線于點H,連接CD,易證得△ADH≌△ADB,△CDF≌△HDF,繼而證得AF+CF=AB!

分析:(1)首先連接OD,由EF是⊙O的切線,可得OD⊥EF,由∠BAC的平行線交⊙O與點D,易證得OD⊥BC,即可得BC∥EF,由AB為直徑,根據(jù)直徑所對的圓周角是直角,可得AC⊥BC,繼而證得AF⊥EF。
(2)首先連接BD并延長,交AF的延長線于點H,連接CD,易證得△ADH≌△ADB,△CDF≌△HDF,繼而證得AF+CF=AB!
證明:(1)連接OD,

∵EF是⊙O的切線,∴OD⊥EF。
∵AD平分∠BAC,∴∠CAD=∠BAD。
!郞D⊥BC。∴BC∥EF。
∵AB為直徑,∴∠ACB=90°,即AC⊥BC。
∴AF⊥EF。
(2)連接BD并延長,交AF的延長線于點H,連接CD,

∵AB是直徑,∴∠ADB=90°,即AD⊥BH。
∴∠ADB=∠ADH=90°,
∵在△ABD和△AHD中,,
∴△ABD≌△AHD(ASA)!郃H=AB。
∵EF是切線,∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD!唷螮DF=∠HDF。
∵DF⊥AF,DF是公共邊,∴△CDF≌△HDF(ASA)!郌H=CF。
∴AF+CF=AF+FH=AH=AB,即AF+CF=AB。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.

(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O的直徑AB=10,C、D是圓上的兩點,且.設過點D的切線ED交AC的延長線于點F.連接OC交AD于點G.

(1)求證:DF⊥AF.
(2)求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2013年四川廣安3分)如圖,如果從半徑為5cm的圓形紙片上剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高是   cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,點C是⊙O的直徑AB延長線上的一點,且有BO=BD=BC.

(1)求證:CD是⊙O的切線;
(2)若半徑OB=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在半徑為1的⊙O中,∠AOB=45°,則sinC的值為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在⊙O中,已知∠OAB=22.5°,則∠C的度數(shù)為
A.135°B.122.5°C.115.5°D.112.5°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

點O在直線AB上,點A1,A2,A3,……在射線OA上,點B1,B2,B3,……在射線OB上,圖中的每一個實線段和虛線段的長均為1個單位長度.一個動點M從O點出發(fā),按如圖所示的箭頭方向沿著實線段和以點O為圓心的半圓勻速運動,速度為每秒1個單位長度.按此規(guī)律,則動點M到達A101點處所需時間為       秒.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在⊙O中,OC⊥弦AB于點C,AB=4,OC=1,則OB的長是
A.B.C.D.

查看答案和解析>>

同步練習冊答案