【題目】在平面直角坐標(biāo)系中,已知點(diǎn)M(m12m+3)

1)若點(diǎn)My軸上,求m的值.

2)若點(diǎn)N(3,2),且直線MNy軸,求線段MN的長(zhǎng).

【答案】1m1;(23

【解析】

1)根據(jù)點(diǎn)在y軸上橫坐標(biāo)為0求解.

2)根據(jù)平行y軸的橫坐標(biāo)相等求解.

1)由題意得:m10

解得:m1;

2)∵點(diǎn)N(3,2),且直線MNy軸,

m1=﹣3,

解得 m=﹣2

M(3,﹣1)

MN2﹣(-1)=3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(x+3)(x2)﹣(x42

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種新運(yùn)算:觀察下列各式:

1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13

(1)請(qǐng)你想一想:a⊙b=   ;

(2)若ab,那么a⊙b   b⊙a(填入“=”或“≠”)

(3)若a(﹣2b)=4,則2a﹣b=   ;請(qǐng)計(jì)算(a﹣b)⊙(2a+b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某玩具廠生產(chǎn)一種玩具,本著控制固定成本,降價(jià)促銷的原則,使生產(chǎn)的玩具能夠全部售出.據(jù)市場(chǎng)調(diào)查,若按每個(gè)玩具280元銷售時(shí),每月可銷售300個(gè).若銷售單價(jià)每降低1元,每月可多售出2個(gè).據(jù)統(tǒng)計(jì),每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷量y(個(gè))滿足如下關(guān)系:

月產(chǎn)銷量y(個(gè))

160

200

240

300

每個(gè)玩具的固定成本Q(元)

60

48

40

32

(1)寫出月產(chǎn)銷量y(個(gè))與銷售單價(jià)x (元)之間的函數(shù)關(guān)系式;

(2)求每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷量y(個(gè))之間的函數(shù)關(guān)系式;

(3)若每個(gè)玩具的固定成本為30元,則它占銷售單價(jià)的幾分之幾?

(4)若該廠這種玩具的月產(chǎn)銷量不超過400個(gè),則每個(gè)玩具的固定成本至少為多少元?銷售單價(jià)最低為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為方便市民通行,某廣場(chǎng)計(jì)劃對(duì)坡角為30°,坡長(zhǎng)為60 米的斜坡AB進(jìn)行改造,在斜坡中點(diǎn)D 處挖去部分坡體(陰影表示),修建一個(gè)平行于水平線CA 的平臺(tái)DE 和一條新的斜坡BE

1)若修建的斜坡BE 的坡角為36°,則平臺(tái)DE的長(zhǎng)約為多少米?

2)在距離坡角A點(diǎn)27米遠(yuǎn)的G處是商場(chǎng)主樓,小明在D點(diǎn)測(cè)得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?

(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°06,cos 36°08,tan 36°0717

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一組數(shù)據(jù)中的每一個(gè)數(shù)減去40后,所得新的一組數(shù)據(jù)的平均數(shù)是2,則原來那組數(shù)據(jù)的平均數(shù)是(  )

A. 40 B. 42 C. 38 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a2+2a=1,則代數(shù)式2a2+4a﹣l的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某公園里一處矩形風(fēng)景欣賞區(qū)ABCD,長(zhǎng)AB=50米,寬BC=25米,為方便游人觀賞,公園特意修建了如圖所示的小路(圖中非陰影部分),小路的寬均為1米,那小明沿著小路的中間,從出口A到出口B所走的路線(圖中虛線)長(zhǎng)為(

A.100米 B.99米 C.98米 D.74米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),判斷四邊形BECD的形狀,并說明理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A=時(shí),四邊形BECD是正方形?

查看答案和解析>>

同步練習(xí)冊(cè)答案