如圖,在△ABC中,∠B=45°,tanC=,AB=,則AC=   
【答案】分析:先過點A作AD⊥BC,垂足是點D,得出AD2+BD2=AB2=2,再根據(jù)∠B=45°,得出AD=BD=1,然后根據(jù)tanC=,得出=,CD=2,最后根據(jù)勾股定理即可求出AC.
解答:解:過點A作AD⊥BC,垂足是點D,
∵AB=,
∴AD2+BD2=AB2=2,
∵∠B=45°,
∴∠BAD=∠B=45°,
∴AD=BD,
∴AD2=BD2=1,
∴AD=BD=1,
∵tanC=,
=,
∴CD=2,
∴AC===
故答案為:
點評:此題考查了解直角三角形,用到的知識點是勾股定理、解直角三角形等,關(guān)鍵是作出輔助線,構(gòu)造直角三角形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案