【題目】我省松原地震后,某校開展了“我為災(zāi)區(qū)獻愛心”捐款活動,八年級一班的團支部對全班50人捐款數(shù)額進行了統(tǒng)計,繪制出如下的統(tǒng)計圖.
(1)把統(tǒng)計圖補充完整;
(2)直接寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(3)若該校共有學生1600人,請根據(jù)該班的捐款情況估計該校捐款金額為20元的學生人數(shù).
【答案】(1)見解析;(2)中位數(shù)為20元、眾數(shù)為20元;(3)608人.
【解析】
(1)求得捐款金額為30元的學生人數(shù),把統(tǒng)計圖補充完整即可.
(2)根據(jù)中位數(shù)和眾數(shù)的定義解答;
(3)根據(jù)該校共有學生1600人乘以捐款金額為20元的學生人數(shù)所占的百分數(shù)即可得到結(jié)論.
解:(1)捐款金額為30元的學生人數(shù)人,
把統(tǒng)計圖補充完整如圖所示;
(2)數(shù)據(jù)總數(shù)為50,所以中位數(shù)是第25、26位數(shù)的平均數(shù),即元,
數(shù)據(jù)20出現(xiàn)了19次,出現(xiàn)次數(shù)最多,所以眾數(shù)是20元;
(3)人,
答:該班的捐款情況估計該校捐款金額為20元的學生人數(shù)約為608人.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:
對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上.
請根據(jù)閱讀材料,解決下列問題:
如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)了 (度);
(2)當點E從點D向點C移動時,連結(jié)AF,設(shè)AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)的圖象交于M、N兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=6,O是AB的中點,直線l經(jīng)過點O,∠1=120°,P是直線l上一點。當△APB為直角三角形時,AP= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,E,F.
(1)如圖①,當點D落在BC邊上時,求點D的坐標;
(2)如圖②,當點D落在線段BE上時,AD與BC交于點H.
①求證△ADB≌△AOB;
②求點H的坐標.
(3)記K為矩形AOBC對角線的交點,S為△KDE的面積,求S的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.點A的坐標為(0,2),點B的坐標為(0,﹣3),反比例函數(shù) 的圖象經(jīng)過點C.
(1)求反比例函數(shù)的解析式;
(2)若點P是反比例函數(shù)圖象上的一點,△PAD的面積恰好等于正方形ABCD的面積,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC、BD相交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,若AB=,BD=2,則OE的長等于________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線.
求該拋物線的對稱軸和頂點P的坐標.
在圖中的直角坐標系內(nèi)用五點法畫出該拋物線的圖象.
將該拋物線向下平移2個單位,向左平移3個單位得到拋物線,此時點P的對應(yīng)點為,試求直線與y軸的交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com