如圖所示,已知ABCD中,E為AD的中點(diǎn),CE的延長線交BA的延長線于點(diǎn)F.

(1)

求證:CD=FA;

(2)

若使∠F=∠BCF,ABCD的邊長之間還需再添加一個(gè)什么條件?請(qǐng)你補(bǔ)上這個(gè)條件,并進(jìn)行證明(不要再增添輔助線).

答案:
解析:

(1)

  證明:在ABCD中,因?yàn)镃D∥BA,所以CD∥BF.

  所以∠D=∠EAF.因?yàn)镋為AD的中點(diǎn),所以DE=AE.因?yàn)椤螩ED=∠FEA,所以△CDE≌△FAE.

  所以CD=FA.

(2)

  解:添加BC=2CD.

  由(1)知CD=AF,所以BC=BF.所以∠F=∠BCF.

  說明:欲尋求添加的條件,可以這樣想.若∠F=∠BCF,則有BC=BF,又AF=AB,所以BC=2AB.即找到添加的條件.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知△ABC是邊長為6cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1m/s,點(diǎn)Q運(yùn)動(dòng)的速度是2m/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t s,解答下列問題:
(1)當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),PQ與AB的位置關(guān)系如何?請(qǐng)說明理由.
(2)在點(diǎn)P與點(diǎn)Q的運(yùn)動(dòng)過程中,△BPQ是否能成為等邊三角形?若能,請(qǐng)求出t,若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖所示,已知△ABC與△CDA關(guān)于點(diǎn)O對(duì)稱,過O任作直線EF分別交AD、BC于點(diǎn)E、F,下面的結(jié)論:(1)點(diǎn)E和點(diǎn)F;B和D是關(guān)于中心O的對(duì)稱點(diǎn);(2)直線BD必經(jīng)過點(diǎn)O;(3)四邊形ABCD是中心對(duì)稱圖形;(4)四邊形DEOC與四邊形BFOA的面積必相等;(5)△AOE與△COF成中心對(duì)稱,其中正確的個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC內(nèi)接于⊙O,AD平分∠BAC交BC于點(diǎn)P、交⊙O于點(diǎn)D,連接DB、DC,在AD上取一點(diǎn)精英家教網(wǎng)I,使DI=DB.
(1)求證:DI2=DP•AD;    
(2)求證:∠ABI=∠CBI;
(3)若⊙O的半徑為
3
,∠BAC=120°,求△BDC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC≌△DCB,是其中AB=DC,試說明∠ABD=∠ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC:
(1)過A畫出中線AD;
(2)畫出角平分線CE;
(3)作AC邊上的高BF.

查看答案和解析>>

同步練習(xí)冊(cè)答案