【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,點(diǎn)P是四邊形ABCD四條邊上的一個(gè)動(dòng)點(diǎn),若P到BD的距離為,則滿足條件的點(diǎn)P有 個(gè).
【答案】2.
【解析】
試題分析:首先作出AB、AD邊上的點(diǎn)P(點(diǎn)A)到BD的垂線段AE,即點(diǎn)P到BD的最長(zhǎng)距離,作出BC、CD的點(diǎn)P(點(diǎn)C)到BD的垂線段CF,即點(diǎn)P到BD的最長(zhǎng)距離,由已知計(jì)算出AE、CF的長(zhǎng)為,比較得出答案.
試題解析:過(guò)點(diǎn)A作AE⊥BD于E,過(guò)點(diǎn)C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=ABsin∠ABD=sin45°=3>,CF=2<,所以在AB和AD邊上有符合P到BD的距離為的點(diǎn)2個(gè),故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明“平行于同一條直線的兩條直線互相平行”時(shí),先假設(shè)_____成立,然后經(jīng)過(guò)推理與平行公理相矛盾.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:
如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關(guān)系.
小吳同學(xué)探究此問(wèn)題的思路是:將△BCD繞點(diǎn)D,逆時(shí)針旋轉(zhuǎn)90°到△AED處,點(diǎn)B,C分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD.
簡(jiǎn)單應(yīng)用:
(1)在圖①中,若AC=,BC=,則CD= .
(2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上,,若AB=13,BC=12,求CD的長(zhǎng).
拓展規(guī)律:
(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(zhǎng)(用含m,n的代數(shù)式表示)
(4)如圖⑤,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則線段PQ與AC的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果電梯上升5層記作+5,那么電梯下降2層應(yīng)記為( )
A. -2 B. +2 C. -5 D. +5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com