知識(shí)遷移
  當(dāng)a>0且x>0時(shí),因?yàn)?img class='latex' alt='數(shù)學(xué)公式' src='http://thumb.zyjl.cn/pic5/latex/308845.png' />,所以x-數(shù)學(xué)公式+數(shù)學(xué)公式≥0,從而x+數(shù)學(xué)公式數(shù)學(xué)公式(當(dāng)x=數(shù)學(xué)公式)是取等號(hào)).
  記函數(shù)y=x+數(shù)學(xué)公式(a>0,x>0).由上述結(jié)論可知:當(dāng)x=數(shù)學(xué)公式時(shí),該函數(shù)有最小值為2數(shù)學(xué)公式
直接應(yīng)用
  已知函數(shù)y1=x(x>0)與函數(shù)y2=數(shù)學(xué)公式(x>0),則當(dāng)x=________時(shí),y1+y2取得最小值為_(kāi)_______.
變形應(yīng)用
  已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求數(shù)學(xué)公式的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值.
實(shí)際應(yīng)用
  已知某汽車的一次運(yùn)輸成本包含以下三個(gè)部分,一是固定費(fèi)用,共360元;二是燃油費(fèi),每千米1.6元;三是折舊費(fèi),它與路程的平方成正比,比例系數(shù)為0.001.設(shè)該汽車一次運(yùn)輸?shù)穆烦虨閤千米,求當(dāng)x為多少時(shí),該汽車平均每千米的運(yùn)輸成本最低?最低是多少元?

1    2
分析:直接運(yùn)用:可以直接套用題意所給的結(jié)論,即可得出結(jié)果.
變形運(yùn)用:先得出的表達(dá)式,然后將(x+1)看做一個(gè)整體,繼而再運(yùn)用所給結(jié)論即可.
實(shí)際運(yùn)用:設(shè)行駛x千米的費(fèi)用為y,則可表示出平均每千米的運(yùn)輸成本,利用所給的結(jié)論即可得出答案.
解答:直接應(yīng)用:
∵函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時(shí),該函數(shù)有最小值為2
∴函數(shù)y1=x(x>0)與函數(shù)y2=(x>0),則當(dāng)x=1時(shí),y1+y2取得最小值為2.
變形應(yīng)用
已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),
==(x+1)+的最小值為:2=4,
∵當(dāng)(x+1)+=4時(shí),
整理得出:x2-2x+1=0,
解得:x1=x2=1,
檢驗(yàn):x=1時(shí),x+1=2≠0,
故x=1是原方程的解,
的最小值為4,相應(yīng)的x的值為1;
實(shí)際應(yīng)用
設(shè)行駛x千米的費(fèi)用為y,則由題意得,y=360+1.6x+0.001x2,
故平均每千米的運(yùn)輸成本為:=0.001x++1.6=0.001x++1.6,
由題意可得:當(dāng)0.001x=時(shí),取得最小,此時(shí)x=600km,
此時(shí)≥2+1.6=2.8,
即當(dāng)一次運(yùn)輸?shù)穆烦虨?00千米時(shí),運(yùn)輸費(fèi)用最低,最低費(fèi)用為:2.8元.
答:汽車一次運(yùn)輸?shù)穆烦虨?00千米,平均每千米的運(yùn)輸成本最低,最低是2.8元.
點(diǎn)評(píng):此題考查了二次函數(shù)的應(yīng)用及幾何不等式的知識(shí),題目出的比較新穎,解答本題的關(guān)鍵是仔細(xì)審題,理解題意所給的結(jié)論,達(dá)到學(xué)以致用的目的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案