怎樣探索三角形全等的條件
如圖,已知AC與BD相交于點O,AD=BC,如果要得到△ACB≌△BDA,還需要補充一個條件?請你至少寫出3個不同的答案,并寫出每種答案中三角形全等的依據(jù).
分析:添加條件AC=BD可利用SSS定理證明△ACB≌△BDA;添加條件∠DAB=∠CBA可利用SAS定理證明△ACB≌△BDA;添加條件∠D=∠C,先證明△ADO≌△BCO,再證明△ACB≌△BDA.
解答:解:添加條件AC=BD,
在△ACB和△BDA中,
AD=BC
AB=AB
AC=DB

∴△ACB≌△BDA(SSS);
添加條件∠DAB=∠CBA,
在△ACB和△BDA中,
AD=BC
∠DAB=∠CBA
AB=BA
,
∴△ACB≌△BDA(SAS).
添加條件:∠C=∠D,
在△AOD和△BOC中,
∠AOD=∠BOC
∠D=∠C
AD=BC
,
∴△AOD≌△BOC(AAS),
∴AO=BO,∠DAO=∠CBO,
∴∠OAB=∠OBA,
∴∠DAB=∠CBA,
在△DAB和△CBA中,
∠D=∠C
DA=CB
∠DAB=∠CBA
,
∴△DAB≌△CBA(ASA).
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小明和小亮在學習探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關系?
(1)請你幫他們解答,并說明理由.
(2)細心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)
(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結論.請你幫他畫出圖形,并寫出結論,不要求說明理由.(如圖3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

小明和小亮在學習探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關系?
(1)請你幫他們解答,并說明理由.
(2)細心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)
(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結論.請你幫他畫出圖形,并寫出結論,不要求說明理由.(如圖3)

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣東省佛山市南海區(qū)九江鎮(zhèn)中考數(shù)學模擬試卷(解析版) 題型:解答題

如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

同步練習冊答案