如圖,一塊余料ABCD,AD∥BC,現(xiàn)進行如下操作:以點B為圓心,適當長為半徑畫弧,分別交BA,BC于點G,H;再分別以點G,H為圓心,大于GH的長為半徑畫弧,兩弧在∠ABC內部相交于點O,畫射線BO,交AD于點E.

(1)求證:AB=AE;

(2)若∠A=100°,求∠EBC的度數(shù).

 


(1)證明:∵AD∥BC,

∴∠AEB=∠EBC.

由BE是∠ABC的角平分線,

∴∠EBC=∠ABE,

∴∠AEB=∠ABE,

∴AB=AE;

(2)由∠A=100°,∠ABE=∠AEB,得

∠ABE=∠AEB=40°.

由AD∥BC,得

∠EBC=∠AEB=40°.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


在“綠滿鄂南”行動中,某社區(qū)計劃對面積為1800m2的區(qū)域進行綠化.經投標,由甲、乙兩個工程隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天.

(1)求甲、乙兩工程隊每天能完成綠化的面積.

(2)設甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務,求y與x的函數(shù)解析式.

(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過26天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,圓O的直徑AB=8,AC=3CB,過C作AB的垂線交圓O于M,N兩點,連結MB,則∠MBA的余弦值為  

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


下列式子沒有意義的是( 。

 

A.

B.

C.

D.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,詹姆斯在探究箏形的性質時,得到如下結論:

①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,

其中正確的結論有( 。

 

A.

0個

B.

1個

C.

2個

D.

3個

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,四邊形ABCD為菱形,對角線AC,BD相交于點E,F(xiàn)是邊BA延長線上一點,連接EF,以EF為直徑作⊙O,交DC于D,G兩點,AD分別于EF,GF交于I,H兩點.

(1)求∠FDE的度數(shù);

(2)試判斷四邊形FACD的形狀,并證明你的結論;

(3)當G為線段DC的中點時,

①求證:FD=FI;

②設AC=2m,BD=2n,求⊙O的面積與菱形ABCD的面積之比.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,P是⊙O外一點,PA、PB分別交⊙O于C、D兩點,已知所對的圓心角分別為90°和50°,則∠P=(  )

 

A.

45°

B.

40°

C.

25°

D.

20°

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC.延長AD到E點,使DE=AB.

(1)求證:∠ABC=∠EDC;

(2)求證:△ABC≌△EDC.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


正八邊形一個內角的度數(shù)為 

查看答案和解析>>

同步練習冊答案