如圖,△ABC中,E、F分別是AB、AC上的點(diǎn).
①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.
以此三個(gè)中的兩個(gè)為條件,另一個(gè)為結(jié)論,可構(gòu)成三個(gè)命題,即:
①②?③,①③?②,②③?①.
(1)試判斷上述三個(gè)命題是否正確(直接作答);
(2)請(qǐng)證明你認(rèn)為正確的命題.

【答案】分析:根據(jù)已知及全等三角形的判定方法進(jìn)行分析,從而得到命題的真假.
解答:解:(1)①②?③,正確;①③?②,錯(cuò)誤,不符合三角形的判定;②③?①,正確.

(2)先證①②?③.如圖.
∵AD平分∠BAC,DE⊥AB,DF⊥AC,AD=AD,
∴Rt△ADE≌Rt△ADF.
∴DE=DF,∠ADE=∠ADF.
設(shè)AD與EF交于G,則△DEG≌△DFG,
∴∠DGE=∠DGF.
∴∠DGE=∠DGF=90°.
∴AD⊥EF.
再證②③?①.如圖2,

設(shè)AD的中點(diǎn)為O,連接OE,OF,
∵DE⊥AB,DF⊥AC,
∴OE,OF分別是Rt△ADE,Rt△ADF斜邊上的中線.
∴OE=AD,OF=AD.
即點(diǎn)O到A、E、D、F的距離相等.
∴四點(diǎn)A、E、D、F在以O(shè)為圓心,AD為半徑的圓上,AD是直徑.
∴EF是⊙O的弦.
∵EF⊥AD,
∴∠DAE=∠DAF.
即AD平分∠BAC.
點(diǎn)評(píng):本題考查了三角形全等的判定定理和性質(zhì),同時(shí)考查了垂徑定理等知識(shí)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案