如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點(diǎn)M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN矩形ABCD.令MN=x,當(dāng)x為何值時(shí),矩形EMNH的面積S有最大值,最大值是多少?
∵矩形MFGN矩形ABCD,
MN
AD
=
MF
AB
.(1分)
∵AB=2AD,MN=x,
∴MF=2x.(2分)
∴EM=EF-MF=10-2x(0<x<5).
∴S=x(10-2x)(5分)
=-2x2+10x
=-2(x-
5
2
2+
25
2

∴當(dāng)x=
5
2
時(shí),S有最大值為
25
2
.(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2-2ax+b經(jīng)過梯形OABC的四個(gè)頂點(diǎn),若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時(shí)向上平移,平移后的兩條直線分別交拋物線于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)如圖3,設(shè)圖1中點(diǎn)D坐標(biāo)為(1,3),M為拋物線的頂點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿著線段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)的頂點(diǎn)C的橫坐標(biāo)為1,一次函數(shù)y=kx+2的圖象與二次函數(shù)的圖象交于A、B兩點(diǎn),且A點(diǎn)在y軸上,以C為圓心,CA為半徑的⊙C與x軸相切,
(1)求二次函數(shù)的解析式;
(2)若B點(diǎn)的橫坐標(biāo)為3,過拋物線頂點(diǎn)且平行于x軸的直線為l,判斷以AB為直徑的圓與直線l的位置關(guān)系;
(3)在滿足(2)的條件下,把二次函數(shù)的圖象向右平移7個(gè)單位,向下平移t個(gè)單位(t>2)的圖象與x軸交于E、F兩點(diǎn),當(dāng)t為何值時(shí),過B、E、F三點(diǎn)的圓的面積最?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,二次函數(shù)y=x2+(2k-1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo);
(3)對于(2)中的點(diǎn)B,在拋物線上是否存在點(diǎn)P,使∠POB=90°?若存在,求出點(diǎn)P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對稱軸上是否存在點(diǎn)P,使△APC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過點(diǎn)Q作QDAC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-2,0)、B(0,1)兩點(diǎn),且對稱軸是y軸.經(jīng)過點(diǎn)C(0,2)的直線l與x軸平行,O為坐標(biāo)原點(diǎn),P、Q為拋物線y=ax2+bx+c(a≠0)上的兩動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)以點(diǎn)P為圓心,PO為半徑的圓記為⊙P,判斷直線l與⊙P的位置關(guān)系,并證明你的結(jié)論;
(3)設(shè)線段PQ=9,G是PQ的中點(diǎn),求點(diǎn)G到直線l距離的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線y=ax2+bx+c與X軸交于兩不同的點(diǎn)A(-1,0),B(m,0),(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時(shí),連接FH并延長至點(diǎn)M,使HM=k•FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=8,BC=10,點(diǎn)P在矩形的邊DC上由D向C運(yùn)動(dòng).沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當(dāng)點(diǎn)P運(yùn)動(dòng)到與C重合時(shí),求重疊部分的面積y;
(2)如圖乙,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),翻折△ADP后,點(diǎn)D恰好落在BC邊上這時(shí)重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即tan2α=
2tanα
1-(tanα)2
(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設(shè)∠DAP=a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

草莓是對薔薇科草莓屬植物的通稱,屬多年生草本植物,草莓的外觀呈心形,鮮美紅嫩,果肉多汁,含有特殊的濃郁水果芳香,草莓營養(yǎng)價(jià)值高,含豐富維生素C,有幫助消化的功效,與此同時(shí),草莓還可以鞏固齒齦,清新口氣,潤澤喉部.我市某草莓種植基地去年第x個(gè)月種植草莓的畝數(shù)y(畝),與x(1≤x≤12,且x為整數(shù))之間的函數(shù)關(guān)系如表:
月份x123456789101112
13種植某數(shù)y6810121416161616161616
每畝收益z(元)與月份x(月)(1≤x≤12,且x為整數(shù))之間存在如圖所示的變化趨勢:
(1)請觀察題中的表格,用所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí),直接寫出y與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出z與x之間滿足的函數(shù)關(guān)系式;
(2)該草莓種植基地在去年哪個(gè)月的總收益最大,求出這個(gè)最大收益;
(3)今年1月份,該草莓種植基地加大規(guī)模,種植草莓比去年12月份多4畝,每畝收益比去年12月份多a%,今年2月份,該草莓種植基地繼續(xù)加大規(guī)模,種植草莓比今年1月份多2a%,每畝收益比今年1月份多6元,若今年2月份該草莓種植基地總收益為672元,請你參考以下數(shù)據(jù),通過計(jì)算估算出a的整數(shù)值.(參考數(shù)據(jù):
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

同步練習(xí)冊答案