【題目】觀察:(﹣2)1=﹣2,(﹣2)2=4,(﹣2)3=﹣8,(﹣2)4=16,(﹣2)5=﹣32,(﹣2)6=64,(﹣2)7=﹣128…用發(fā)現(xiàn)的規(guī)律寫出(﹣2)2017的末位數(shù)字是____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道有兩條邊相等的三角形叫做等腰三角形.類似的,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.
(1)請(qǐng)寫出一個(gè)你學(xué)過的四邊形中是等對(duì)邊四邊形的圖形的名稱.
(2)如圖1,在中,點(diǎn)分別在上,且相交于點(diǎn),若, .請(qǐng)你寫出與相等的角.
(3)我們易證圖中的四邊形是等對(duì)邊四邊形.
(提示:如圖2,可證≌再證≌,可得到結(jié)論.不需證明)
若在中,如果是不等于的銳角, 分別在上,且相交于點(diǎn), .探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)兩位數(shù),十位數(shù)字與個(gè)位數(shù)字之和是5,把這個(gè)兩位數(shù)的個(gè)位數(shù)字與十位數(shù)字對(duì)調(diào)后,所得的新兩位數(shù)與原來兩位數(shù)的乘積為736,求原來的兩位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面關(guān)于定理的說法不正確的是( 。
A. 定理是真命題
B. 定理的正確性不需要證明
C. 定理可以作為推理論證的依據(jù)
D. 定理的正確性需證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)某商場(chǎng)對(duì)一種新售的手機(jī)進(jìn)行市場(chǎng)問卷調(diào)查,其中一個(gè)項(xiàng)目是讓每個(gè)人按A(不喜歡)、B(比較喜歡)、C(喜歡)、D(非常喜歡)四個(gè)等級(jí)對(duì)該手機(jī)進(jìn)行評(píng)價(jià),圖①和圖②是該商場(chǎng)采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)本次調(diào)查的人數(shù)為_____人.
(2)圖①中,D等級(jí)所占圓心角的度數(shù)為_____;
(3)圖2中,請(qǐng)?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一測(cè)量愛好者,在海邊測(cè)量位于正東方向的小島高度AC,如圖所示,他先在點(diǎn)B測(cè)得山頂點(diǎn)A的仰角為30°,然后向正東方向前行62米,到達(dá)D點(diǎn),在測(cè)得山頂點(diǎn)A的仰角為60°(B、C、D三點(diǎn)在同一水平面上,且測(cè)量?jī)x的高度忽略不計(jì)).求小島高度AC(結(jié)果精確的1米,參考數(shù)值:≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下調(diào)查中,適宜全面調(diào)查的是( 。
A. 調(diào)查某批次汽車的抗撞擊能力B. 調(diào)查某班學(xué)生的身高情況
C. 調(diào)查春節(jié)聯(lián)歡晚會(huì)的收視率D. 調(diào)查濟(jì)寧市居民日平均用水量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】著名的瑞士數(shù)學(xué)家歐拉曾指出:可以表示為四個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為四個(gè)整數(shù)平方之和,即 ,這就是著名的歐拉恒等式,有人稱這樣的數(shù)為“不變心的數(shù)”.實(shí)際上,上述結(jié)論可減弱為:可以表示為兩個(gè)整數(shù)平方之和的甲、乙兩數(shù)相乘,其乘積仍然可以表示為兩個(gè)整數(shù)平方之和.
【動(dòng)手一試】
試將改成兩個(gè)整數(shù)平方之和的形式. ;
【閱讀思考】
在數(shù)學(xué)思想中,有種解題技巧稱之為“無中生有”.例如問題:將代數(shù)式改成兩個(gè)平方之差的形式.解:原式﹒
【解決問題】
請(qǐng)你靈活運(yùn)用利用上述思想來解決“不變心的數(shù)”問題:將代數(shù)式改成兩個(gè)整數(shù)平方之和的形式(其中a、b、c、d均為整數(shù)),并給出詳細(xì)的推導(dǎo)過程﹒
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com