閱讀下列材料:

我們知道,一次函數(shù)ykxb的圖象是一條直線(xiàn),而ykxb經(jīng)過(guò)恒等變形可化為直線(xiàn)的另一種表達(dá)形式:AxBxC=0(AB、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)Pm,n)到直線(xiàn)lAxBxC=0的距離(d)計(jì)算公式是:d 

例:求點(diǎn)P(1,2)到直線(xiàn)y x的距離d時(shí),先將y x化為5x-12y-2=0,再由上述距離公式求得d  

解答下列問(wèn)題:

如圖2,已知直線(xiàn)y=-x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)yx2-4x+5上的一點(diǎn)M(3,2).

(1)求點(diǎn)M到直線(xiàn)AB的距離.

(2)拋物線(xiàn)上是否存在點(diǎn)P,使得△PAB的面積最?若存在,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

 

【答案】

(1) 6 (2)存在,P,),△PAB面積的最小值為×5×

【解析】

試題分析:(1)將y=- x-4化為4x+3y+12=0,由上述距離公式得:

d =6

∴點(diǎn)M到直線(xiàn)AB的距離為6         

(2)存在

設(shè)Pxx2-4x+5),則點(diǎn)P到直線(xiàn)AB的距離為:

d

由圖象知,點(diǎn)P到直線(xiàn)AB的距離最小時(shí)x>0,x2-4x+5>0

d (x )2           

∴當(dāng)x 時(shí),d最小,為          

當(dāng)x時(shí),x2-4x+5=()2-4×+5= ,∴P,)          

y=- x-4中,令x=0,則y=-4,∴B(0,-4)

y=0,則xy=-3!A(-3,0)

AB=5              

∴△PAB面積的最小值為×5×       

考點(diǎn):直線(xiàn)與拋物線(xiàn)

點(diǎn)評(píng):本題考查直線(xiàn)與拋物線(xiàn),掌握直線(xiàn)與拋物線(xiàn)的性質(zhì),會(huì)求點(diǎn)到直線(xiàn)的距離

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

28、閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;
這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿(mǎn)足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為
1或-7
;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

31、閱讀下列材料:我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上x(chóng)1,x2對(duì)應(yīng)點(diǎn)之間的距離;
例1.已知|x|=2,求x的值.
解:容易看出,在數(shù)軸上與原點(diǎn)距離為2點(diǎn)的對(duì)應(yīng)數(shù)為-2和2,
即x的值為-2和2.
例2.已知|x-1|=2,求x的值.
解:在數(shù)軸上與1的距離為2點(diǎn)的對(duì)應(yīng)數(shù)為3和-1,
即x的值為3和-1.
仿照閱讀材料的解法,求下列各式中x的值.
(1)|x|=3
(2)|x+2|=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)閱讀下列材料:
我們規(guī)定一種運(yùn)算:
.
ac
bd
.
=ad-bc,例如:
.
23
45
.
=2×5-3×4=10-12=-2.按照這種運(yùn)算的規(guī)定,請(qǐng)解答下列問(wèn)題:(1)直接寫(xiě)出
.
-12
-20.5
.
的計(jì)算結(jié)果;
(2)當(dāng)x取何值時(shí),
.
x0.5-x
12x
.
=0;
(3)若
.
0.5x-1y
83
.
=
.
x-y
0.5-1
.
=-7,直接寫(xiě)出x和y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•郴州)閱讀下列材料:
    我們知道,一次函數(shù)y=kx+b的圖象是一條直線(xiàn),而y=kx+b經(jīng)過(guò)恒等變形可化為直線(xiàn)的另一種表達(dá)形式:Ax+Bx+C=0(A、B、C是常數(shù),且A、B不同時(shí)為0).如圖1,點(diǎn)P(m,n)到直線(xiàn)l:Ax+By+C=0的距離(d)計(jì)算公式是:d=
|A×m+B×n+C|
A2+B2


    例:求點(diǎn)P(1,2)到直線(xiàn)y=
5
12
x-
1
6
的距離d時(shí),先將y=
5
12
x-
1
6
化為5x-12y-2=0,再由上述距離公式求得d=
|5×1+(-12)×2+(-2)|
52+(-12)2
=
21
13

    解答下列問(wèn)題:
    如圖2,已知直線(xiàn)y=-
4
3
x-4
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線(xiàn)y=x2-4x+5上的一點(diǎn)M(3,2).
    (1)求點(diǎn)M到直線(xiàn)AB的距離.
    (2)拋物線(xiàn)上是否存在點(diǎn)P,使得△PAB的面積最?若存在,求出點(diǎn)P的坐標(biāo)及△PAB面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料:我們?cè)趯W(xué)習(xí)二次根式時(shí),式子
x
有意義,則x≥0;式子
-x
有意義,則x≤0;若式子
x
+
-x
有意義,求x的取值范圍;這個(gè)問(wèn)題可以轉(zhuǎn)化為不等式組來(lái)解決,即求關(guān)于x的不等式組
x≥0
-x≤0
的解集,解這個(gè)不等式組得x=0.請(qǐng)你運(yùn)用上述的數(shù)學(xué)方法解決下列問(wèn)題:
(1)式子
x2-1
+
1-x2
有意義,求x的取值范圍;
(2)已知:y=
x-2
+
2-x
-3
,求xy的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案