【題目】如圖,在矩形ABCD中,AB=8,BC=12,點E是BC的中點,連接AE,將△ABE沿AE折疊,點B落在點F處,連接FC,則sin∠ECF=( )
A.
B.
C.
D.
【答案】D
【解析】解:過E作EH⊥CF于H,
由折疊的性質(zhì)得:BE=EF,∠BEA=∠FEA,
∵點E是BC的中點,
∴CE=BE,
∴EF=CE,
∴∠FEH=∠CEH,
∴∠AEB+∠CEH=90°,
在矩形ABCD中,
∵∠B=90°,
∴∠BAE+∠BEA=90°,
∴∠BAE=∠CEH,∠B=∠EHC,
∴△ABE∽△EHC,
∴ ,
∵AE= =10,
∴EH= ,
∴sin∠ECF=sin∠ECH= = ,
故選D.
【考點精析】掌握翻折變換(折疊問題)是解答本題的根本,需要知道折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知點R(1,0),點K(4,4),直線y=- x+b過點K , 分別交x軸、y軸于U、V兩點,以點R為圓心, RK為半徑作⊙R , ⊙R交x軸于A.
(1)若二次函數(shù)的圖象經(jīng)過點A、B(-2,0)、C(0,-8),求二次函數(shù)的解析式;
(2)判斷直線UV與⊙R的位置關(guān)系,并說明理由;
(3)若動點P、Q同時從A點都以相同的速度分別沿AB、AC邊運動,當點P運動到B點時,點Q停止運動,這時,在x軸上是否存在點E , 使得以A、E、Q為頂點的三角形是等腰三角形.若存在,請求出E點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OABC的頂點A在x軸正半軸上,頂點C的坐標為(4,3),D是拋物線y=﹣x2+6x上一點,且在x軸上方,則△BCD面積的最大值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為邊BC的中點,過點A作射線AE,過點C作CF⊥AE于點F,過點B作BG⊥AE于點G,連接FD并延長,交BG于點H.
(1)求證:DF=DH;
(2)若∠CFD=120°,求證:△DHG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:求若干個相同的有理數(shù)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”一般地,把(a≠0)記作a,讀作“a的圈c次方” .關(guān)于除方,下列說法正確的個數(shù)是( )
①任何非零數(shù)的圈2次方都等于1;②對于任何正整數(shù)c,1=1;③4③=3④ ;④負數(shù)的圈奇數(shù)次方結(jié)果是負數(shù),負數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學初二年級抽取部分學生進行跳繩測試,并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘100~109次的為中等;每分鐘110~119次的為良好;每分鐘120次及以上的為優(yōu)秀。測試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計圖。請根據(jù)圖中信息,解答下列各題:
(1)參加這次跳繩測試的共有人;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,“中等”部分所對的圓心角的度數(shù)是;
(4)如果該校初二年級的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計數(shù)據(jù),請你估算出該校初二年級跳繩成績?yōu)椤皟?yōu)秀”的人數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點O順時針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點M,N,DF交AC于點Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結(jié)論是、佗冖邸。ò阉姓_的結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師給愛好學習的小兵和小鵬提出這樣一個問題:如圖1,在△ABC中,AB=AC點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小兵的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小鵬的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,先證△GPC≌△ECP,可得:PE=CG,而PD=GF,則PD+PE=CF.
請運用上述中所證明的結(jié)論和證明思路完成下列兩題:
(1)如圖3,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;
(2)如圖4,P是邊長為6的等邊三角形ABC內(nèi)任一點,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com