【題目】如果三角形三邊的長a、b、c滿足,那么我們就把這樣的三角形叫做“勻稱三角形”,如:三邊長分別為1,1,1或3,5,7,…的三角形都是“勻稱三角形”.
(1)如圖1,已知兩條線段的長分別為a、c(a<c).用直尺和圓規(guī)作一個最短邊、最長邊的長分別為a、c的“勻稱三角形”(不寫作法,保留作圖痕跡);
(2)如圖2,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線交AB延長線于點(diǎn)E,交AC于點(diǎn)F,若,判斷△AEF是否為“勻稱三角形”?請說明理由.
【答案】(1)作圖見解析;(2)證明見解析
【解析】試題分析:(1)根據(jù)題意可以畫出相應(yīng)的圖形,本題得以解決;
(2)根據(jù)“勻稱三角形”的定義,由題目中信息的,利用切線的性質(zhì),等腰三角形的性質(zhì),三角形的全等以及勾股定理可以判斷△AEF是否為“勻稱三角形”.
試題解析:(1)所求圖形,如圖所示:
(2)△AEF是“勻稱三角形”,
理由:連接AD、OD,如圖所示:
∵AB是⊙O的直徑,
∴AD⊥BC,
∵AB=AC,
∴點(diǎn)D是BC的中點(diǎn),
∵點(diǎn)O為AB的中點(diǎn),
∴OD∥AC,
∵DF切⊙O于點(diǎn)D,
∴OD⊥DF,
∴EF⊥AF,
過點(diǎn)B作BG⊥EF于點(diǎn)G,
∵∠BGD=∠CFD=90°,∠BDG=∠CDF,BD=CD,
∴△BGD≌△CFD(ASA),
∴BG=CF,
∵,
∴,
∵BG∥AF,
∴,
在Rt△AEF中,設(shè)AE=5k,AF=3k,由勾股定理得,EF=4k,
∴=4k=EF,
∴△AEF是“勻稱三角形”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x-3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.
(1)填空:n的值為 ,k的值為 ;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在x軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)觀察反比函數(shù)y=的圖象,當(dāng)y≥-2時,請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項(xiàng)目”對全班學(xué)生進(jìn)行調(diào)查(每名學(xué)生分別選一個活動項(xiàng)目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
根據(jù)以上信息解決下列問題:
(1) , ;
(2)扇形統(tǒng)計圖中機(jī)器人項(xiàng)目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項(xiàng)目的名學(xué)生中隨機(jī)選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖本題圖①,在等腰Rt中, ,,為線段上一點(diǎn),以為半徑作交于點(diǎn),連接、,線段、、的中點(diǎn)分別為、、.
(1)試探究是什么特殊三角形?說明理由;
(2)將繞點(diǎn)逆時針方向旋轉(zhuǎn)到圖②的位置,上述結(jié)論是否成立?并證明結(jié)論;
(3)若,把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),求的面積y的最大值與最小值的差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,水平放置一個三角板和一個量角器,三角板的邊AB和量角器的直徑DE在一條直線上,∠ACB=90°,∠BAC=30°,OD=3cm,開始的時候BD=1cm,現(xiàn)在三角板以2cm/s的速度向右移動.
(1)當(dāng)點(diǎn)B于點(diǎn)O重合的時候,求三角板運(yùn)動的時間;
(2)三角板繼續(xù)向右運(yùn)動,當(dāng)B點(diǎn)和E點(diǎn)重合時,AC與半圓相切于點(diǎn)F,連接EF,如圖2所示.
①求證:EF平分∠AEC;
②求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于點(diǎn)F,且AF=BD,連接BF.
(1)BD與CD有什么數(shù)量關(guān)系,并說明理由;
(2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】10個人圍成一圈做游戲.游戲的規(guī)則是:每個人心里都想一個數(shù),并把目己想的數(shù)告訴與他相鄰的兩個人,然后每個人將與他相鄰的兩個人告訴他的數(shù)的平均數(shù)報出來,若報出來的數(shù)如圖所示,則報出來的數(shù)是3的人心里想的數(shù)是( )
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖1,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.
(2)簡單應(yīng)用:在(1)中,如果AB=4,AD=6,求DG的長;
(3)類比探究:如圖2,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在大課間活動中,體育老師隨機(jī)抽取了七年級甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測試,并對成績進(jìn)行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補(bǔ)充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個甲班學(xué)生,第四組中只有一個乙班學(xué)生,老師隨機(jī)從這兩個組中各選一名學(xué)生談心得體會,則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com