精英家教網 > 初中數學 > 題目詳情
已知直線y=-
1
2
x+3.
(1)若點(-1,a)和(
1
2
,b)都在該直線上,比較a和b的大。
(2)在平面直角坐標系中,求該直線與兩坐標軸的交點坐標;
(3)求該直線上到x軸的距離等于2的點的坐標.
分析:(1)根據一次函數中x的系數判斷出函數的增減性,再比較出-1與
1
2
的大小,根據其增減性即可得出結論;
(2)先令y=0,求出x的值即可得出直線與x軸的交點坐標,再令x=0求出y的值即可得出直線與y軸的交點坐標;
(3)設該直線上到x軸的距離等于2的點的坐標為(x,-
1
2
x+3),再根據|-
1
2
x+3|=2求出x的值即可.
解答:解:(1)∵一次函數y=-
1
2
x+3中,k=-
1
2
<0,
∴y隨x的增大而減小,
∵-1<
1
2
,
∴a>b;

(2)∵令y=0,則x=6;令x=0,則y=3,
∴直線與x、y軸的交點坐標分別為:(6,0)、(0,3);

(3)該直線上到x軸的距離等于2的點的坐標為(x,-
1
2
x+3),
∵|-
1
2
x+3|=2,
∴-
1
2
x+3=2或-
1
2
x+3=-2,
解得x=2或x=10,
當x=2時,-
1
2
x+3=(-
1
2
)×2+3=2;
當x=10時,-
1
2
x+3=(-
1
2
)×10+3=-2;
∴該直線上到x軸的距離等于2的點的坐標為:(2,2)或(10,-2).
點評:本題考查的是一次函數圖象上點的坐標特點,熟知一次函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知直線y=
1
2
x+1
,請在平面直角坐標系中畫出直線y=
1
2
x+1
繞點A(1,0)順時針旋轉90°后的圖形,并直接寫出該圖形的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知直線y=
1
2
x+1與y軸交于點A,與x軸交于點D,拋物線y=
1
2
x2+bx+c與直線交于A、精英家教網E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).
(1)求該拋物線的解析式;
(2)動點P在x軸上移動,當△PAE是直角三角形時,求點P的坐標P;
(3)在拋物線的對稱軸上找一點M,使|AM-MC|的值最大,求出點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A,B兩點,且點A的橫坐標為4.
(1)求k的值;
(2)若雙曲線y=
k
x
(k>0)
上一點C的縱坐標為8,求△AOC的面積;
(3)另一條直線y=2x交雙曲線y=
k
x
(k>0)
于P,Q兩點(P點在第一象限),若由點P為頂點組成的四邊形AQBP,求四邊形AQBP的面積.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

已知直線y=
1
2
x+
k
2
-3
y=-
1
3
x+
4k
3
+
1
3
的交點在第四象限.
(1)求k的取值范圍;
(2)若k為非負整數,△PAO是以OA為底的等腰三角形,點A的坐標為(2,0),點P在直線y=
1
2
x+
k
2
-3
上,求P點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•梧州模擬)如圖,已知直線y=-
1
2
x+1
交坐標軸于A,B 兩點,以線段AB為邊向上作正方形ABCD,過點A,D,C的拋物線與直線另一個交點為E.
(1)請直接寫出點C,D的坐標; 
(2)求拋物線的解析式;
(3)若正方形以每秒
5
個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設正方形落在x軸下方部分的面積為S,求S關于滑行時間t的函數關系式,并寫出相應自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案