邊形一條對(duì)角線所在直線上的點(diǎn),如果到這條對(duì)角線的兩端點(diǎn)的距離不相等,但到另一對(duì)角線的兩個(gè)端點(diǎn)的距離相等,則稱這點(diǎn)為這個(gè)四邊形的準(zhǔn)等距點(diǎn).如圖l,點(diǎn)P為四邊形ABCD對(duì)角線AC所在直線上的一點(diǎn),PD=PB,PA≠PC,則點(diǎn)P為四邊形ABCD的準(zhǔn)等距點(diǎn). (1)如圖2,畫出菱形ABCD的一個(gè)準(zhǔn)等距點(diǎn). (2)如圖3,作出四邊形ABCD的一個(gè)準(zhǔn)等距點(diǎn)(尺規(guī)作圖,保留作圖痕跡,不要求寫作法). (3)如圖4,在四邊形ABCD中,P是AC上的點(diǎn),PA≠PC,延長(zhǎng)BP交CD于點(diǎn)E,延長(zhǎng)DP交BC于點(diǎn)F,且∠CDF=∠CBE,CE=CF.求證:點(diǎn)P是四邊形AB CD的準(zhǔn)等距點(diǎn). (4)試研究四邊形的準(zhǔn)等距點(diǎn)個(gè)數(shù)的情況(說出相應(yīng)四邊形的特征及準(zhǔn)等距點(diǎn)的個(gè)數(shù),不必證明).
解:(1)因?yàn)榱庑蔚膶?duì)角線互相垂直平分,所以在直線AC上除線段AC中點(diǎn)外的任意一點(diǎn)都符合條件。2)線段BD的垂直平分線與直線AC的交點(diǎn)。(3)連結(jié)DB,證 △DCF≌△BCE(AAS), ∴CD=CB, ∴∠CDB=∠CBD. ∴∠PDB=∠PBD, ∴PD=PB, ∵PA≠PC ∴點(diǎn)P是四邊形ABCD的準(zhǔn)等距點(diǎn).
(4)①當(dāng)四邊形的對(duì)角線互相垂直且任何一條對(duì)角線不平分另一對(duì)角線或者對(duì)角線互相平分且不垂直時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為0個(gè);②當(dāng)四邊形的對(duì)角線不互相垂直,又不互相平分,且有一條對(duì)角線的中垂線經(jīng)過另一對(duì)角線的中點(diǎn)時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為1個(gè);③當(dāng)四邊形的對(duì)角線既不互相垂直又不互相平分,且任何一條對(duì)角線的中垂線都不經(jīng)過另一條對(duì)角線的中點(diǎn)時(shí),準(zhǔn)等距點(diǎn)的個(gè)數(shù)為2個(gè);④四邊形的對(duì)角線互相垂直且至少有一條對(duì)角線平分另一對(duì)角線時(shí),準(zhǔn)等距點(diǎn)有無數(shù)個(gè).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com