如圖,在正方形ABCD內(nèi),以D點(diǎn)為圓心,AD長(zhǎng)為半徑的弧與以BC為直徑的半圓交于點(diǎn)P,延長(zhǎng)CP、AP交AB、BC于點(diǎn)M、N.若AB=2,則AP等于( )

A.
B.
C.
D.
【答案】分析:設(shè)點(diǎn)S為BC的中點(diǎn),連接,DP,DS,DS與PC交于點(diǎn)W,作PE⊥BC于點(diǎn)E,PF⊥AB于點(diǎn)F,從而可證△DCS≌△DPS,也推∠DPS=∠DCB=90°,然后求出AP、PF,再根據(jù)勾股定理求出AP.
解答:解:如圖,設(shè)點(diǎn)S為BC的中點(diǎn),連接DP,DS,DS與PC交于點(diǎn)W,作PE⊥BC于點(diǎn)E,PF⊥AB于點(diǎn)F,
∴DP=CD=2,PS=CS=1,即DS是PC的中垂線(xiàn),
∴△DCS≌△DPS,
∴∠DPS=∠DCB=90°,
∴DS===,
由三角形的面積公式可得PC=
∵BC為直徑,
∴∠CPB=90°,
∴PB==,
∴PE=FB==
∴PF=BE==,
∴AF=AB-FB=,
∴AP==
故選B.
點(diǎn)評(píng):本題利用了正方形的性質(zhì),中垂線(xiàn)的性質(zhì),勾股定理,射影定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說(shuō)明這兩個(gè)三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn)精英家教網(wǎng),交BC于點(diǎn)E.
(1)求證:點(diǎn)E是邊BC的中點(diǎn);
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長(zhǎng)度;
(3)若以點(diǎn)O,D,E,C為頂點(diǎn)的四邊形是正方形,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點(diǎn)E是邊AC的中點(diǎn),連接DE,DE的延長(zhǎng)線(xiàn)與邊BC相交于點(diǎn)F,AG∥BC,交DE于點(diǎn)G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長(zhǎng)為3+
3

(1)如圖①,正方形EFPN的頂點(diǎn)E、F在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N(xiāo)′,且使正方形E′F′P′N(xiāo)′的面積最大(不要求寫(xiě)作法);
(2)求(1)中作出的正方形E′F′P′N(xiāo)′的邊長(zhǎng);
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點(diǎn)P、N分別在邊CB、CA上,求這兩個(gè)正方形面積和的最大值和最小值,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對(duì)角線(xiàn)交于點(diǎn)O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案