【答案】
分析:(1)根據(jù)O、E的坐標(biāo)即可確定拋物線的解析式,進(jìn)而求出其頂點(diǎn)坐標(biāo),即可得出所求的結(jié)論;
(2)①當(dāng)t=
時(shí),OA=AP=
,由此可求出P點(diǎn)的坐標(biāo),將其代入拋物線的解析式中進(jìn)行驗(yàn)證即可;
②此題要分成兩種情況討論:
一、PN=0時(shí),即t=0或t=3時(shí),以P、N、C、D為頂點(diǎn)的多邊形是△PCD,以CD為底AD長為高即可求出其面積;
二、PN≠0時(shí),即0<t<3時(shí),以P、N、C、D為頂點(diǎn)的多邊形是梯形PNCD,根據(jù)拋物線的解析式可表示出N點(diǎn)的縱坐標(biāo),從而得出PN的長,根據(jù)梯形的面積公式即可求出此時(shí)S、t的函數(shù)關(guān)系式,令S=5,可得到關(guān)于t的方程,若方程有解,根據(jù)求得的t值即可確定N點(diǎn)的坐標(biāo),若方程無解,則說明以P、N、C、D為頂點(diǎn)的多邊形的面積不可能為5.
解答:解:(1)因拋物線y=-x
2+bx+c經(jīng)過坐標(biāo)原點(diǎn)O(0,0)和點(diǎn)E(4,0),
故可得c=0,b=4,
所以拋物線的解析式為y=-x
2+4x(1分),
由y=-x
2+4x,y=-(x-2)
2+4,
得當(dāng)x=2時(shí),該拋物線的最大值是4;(2分)
(2)①點(diǎn)P不在直線ME上;
已知M點(diǎn)的坐標(biāo)為(2,4),E點(diǎn)的坐標(biāo)為(4,0),
設(shè)直線ME的關(guān)系式為y=kx+a;
于是得,
,
解得:
,
所以直線ME的關(guān)系式為y=-2x+8;(3分)
由已知條件易得,當(dāng)t=
時(shí),OA=AP=
,P(
,
)(4分)
∵P點(diǎn)的坐標(biāo)不滿足直線ME的關(guān)系式y(tǒng)=-2x+8;
∴當(dāng)t=
時(shí),點(diǎn)P不在直線ME上;(5分)
②以P、N、C、D為頂點(diǎn)的多邊形面積可能為5
∵點(diǎn)A在x軸的非負(fù)半軸上,且N在拋物線上,
∴OA=AP=t;
∴點(diǎn)P、N的坐標(biāo)分別為(t,t)、(t,-t
2+4t)(6分)
∴AN=-t
2+4t(0≤t≤3),
∴AN-AP=(-t
2+4t)-t=-t
2+3t=t(3-t)≥0,
∴PN=-t
2+3t(7分)
(。┊(dāng)PN=0,即t=0或t=3時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是三角形,此三角形的高為AD,
∴S=
DC•AD=
×3×2=3;
(ⅱ)當(dāng)PN≠0時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形是四邊形
∵PN∥CD,AD⊥CD,
∴S=
(CD+PN)•AD=
[3+(-t
2+3t)]×2=-t
2+3t+3(8分)
當(dāng)-t
2+3t+3=5時(shí),解得t=1、2(9分)
而1、2都在0≤t≤3范圍內(nèi),故以P、N、C、D為頂點(diǎn)的多邊形面積為5
綜上所述,當(dāng)t=1、2時(shí),以點(diǎn)P,N,C,D為頂點(diǎn)的多邊形面積為5,
當(dāng)t=1時(shí),此時(shí)N點(diǎn)的坐標(biāo)(1,3)(10分)
當(dāng)t=2時(shí),此時(shí)N點(diǎn)的坐標(biāo)(2,4).(11分)
說明:(ⅱ)中的關(guān)系式,當(dāng)t=0和t=3時(shí)也適合,(故在閱卷時(shí)沒有(。挥校áⅲ┮部梢,不扣分)
點(diǎn)評(píng):本題是二次函數(shù)的綜合題型,其中涉及的知識(shí)點(diǎn)有拋物線的頂點(diǎn)坐標(biāo)的求法、圖形的面積求法以及二次函數(shù)的應(yīng)用.在求有關(guān)動(dòng)點(diǎn)問題時(shí)要注意分析題意分情況討論結(jié)果.