如圖,四個二次函數(shù)的圖像中,分別對應的是①y = ax2;②y = bx2;③y = cx2; ④y = dx2
則a、b、c、d的大小關系為(   )
A.a(chǎn)>b>c>dB.a(chǎn)>b>d>cC.b>a>c>dD.b>a>d>c
A
解:由二次函數(shù)的性質知,
(1)拋物線的開口大小由決定.
越大,拋物線的開口越窄;
越小,拋物線的開口越寬.
(2)拋物線的開口方向由a決定.
當a>0時,開口向上,拋物線(除頂點外)都在x軸上方;
當a<0時,開口向下,拋物線(除頂點外)都在x軸下方.
根據(jù)以上結論知:a>b>0>c>d.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(14,0)和C(0,-8),對稱軸為x=4.
(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
(3)在(2)的結論下,直線x=1上是否存在點M使△MPQ為等腰三角形?若存在,請求出所有點M的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線y=x2-2x向上平移3個單位,再向右平移4個單位得到的拋物線解析式為                            .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

煙花廠為熱烈慶!笆粐鴳c”,特別設計制作一種新型禮炮,這種禮炮的升空高度與飛行時間的關系式是,禮炮點火升空后會在最高點處引爆,則這種禮炮能上升的最大高度為( 。
A.91米B.90米C.81米D.80米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

小明從下邊的二次函數(shù)圖像中,觀察得出了下面的五條信息:①,②,③函數(shù)的最小值為-3,④當時,,⑤當,。你認為其中正確的個數(shù)為
A.2 B.3C.4  D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-5x-6.
(1)求此函數(shù)圖象的頂點A和其與x軸的交點B和C的坐標;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知點(3,),(4,), (5,)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關系是(  )
A.y1>y2>y3B.y2> y1> y3C.y2>y3> y1D.y3> y2> y1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF
以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關系式; ②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、
N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某賓館有客房間,當每間客房的定價為每天元時,客房會全部住滿.當每間客房每天的定價每漲元時,就會有間客房空閑.如果旅客居住客房,賓館需對每間客房每天支出元的各種費用.
(1)請寫出該賓館每天的利潤(元)與每間客房漲價(元)之間的函數(shù)關系式;
(2)設某天的利潤為元,元的利潤是否為該天的最大利潤?如果是,請說明理由;如果不是,請求出最大利潤,并指出此時客房定價應為多少元?
(3)請回答客房定價在什么范圍內賓館就可獲得利潤?

查看答案和解析>>

同步練習冊答案