【題目】如圖,在邊長(zhǎng)為的菱形中,對(duì)角線,點(diǎn)是直線上的動(dòng)點(diǎn),于,于.
如圖,在邊長(zhǎng)為的菱形中,對(duì)角線,點(diǎn)是直線上的動(dòng)點(diǎn),于,于.
對(duì)角線的長(zhǎng)是________,菱形的面積是________;
如圖,當(dāng)點(diǎn)在對(duì)角線上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;
如圖,當(dāng)點(diǎn)在對(duì)角線的延長(zhǎng)線上時(shí),的值是否發(fā)生變化?若不變請(qǐng)說(shuō)明理由,若變化,請(qǐng)直接寫(xiě)出、之間的數(shù)量關(guān)系,不用明理由.
【答案】624
【解析】
(1)連接AC與BD相交于點(diǎn)G,根據(jù)菱形的對(duì)角線互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根據(jù)AC=2AG計(jì)算即可得解;再根據(jù)菱形的面積等于對(duì)角線乘積的一半列式計(jì)算即可得解;
(2)連接AO,根據(jù)S△ABD=S△ABO+S△ADO列式計(jì)算即可得解;
(3)連接AO,根據(jù)S△ABD=S△ABO-S△ADO列式整理即可得解.
解:(1)如圖,連接AC與BD相交于點(diǎn)G,
在菱形ABCD中,AC⊥BD,BG=BD=×8=4,
由勾股定理得,AG=3,
∴AC=2AG=2×3=6,
菱形ABCD的面積=ACBD=×6×8=24;
故答案為:6;24;
(2)如圖1,連接AO,
則S△ABD=S△ABO+S△ADO,
∴BDAG=ABOE+ADOF,
即×8×3=×5OE+×5OF,
解得OE+OF=4.8是定值,不變;
(3)如圖2,連接AO,
則S△ABD=S△ABO-S△ADO,
∴BDAG=ABOE-ADOF,
即×8×3=×5OE-×5OF,
解得OE-OF=4.8,是定值,不變,
∴OE+OF的值變化,OE、OF之間的數(shù)量關(guān)系為:OE-OF=4.8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三條邊都相等的三角形叫做等邊三角形,它的三個(gè)角都是60°.△ABC是等邊三角形,點(diǎn)D在BC所在直線上運(yùn)動(dòng),連接AD,在AD所在直線的右側(cè)作∠DAE=60°,交△ABC的外角∠ACF的角平分線所在直線于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),請(qǐng)你猜想AD與AE的大小關(guān)系,并給出證明;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),依據(jù)題意補(bǔ)全圖形,請(qǐng)問(wèn)上述結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn),且AD=2,AC=BC=.
(1)證明:△ACE≌△BCD;
(2)求四邊形ADCE的面積;
(3)求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11·湖州)(本小題10分)
如圖,已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF。
⑴求證:四邊形AECF是平行四邊形;
⑵若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形 ABCD 中,AB=5,AD=13,點(diǎn) E 為 BC 上一點(diǎn),將△ABE沿 AE 折疊,使點(diǎn) B 落在長(zhǎng)方形內(nèi)點(diǎn) F 處,連接 DF 且 DF=12.
(1)試說(shuō)明:△ADF 是直角三角形;
(2)求 BE 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形中,,點(diǎn)在邊上,點(diǎn)在邊上.
(1)如圖,若是的中點(diǎn),,求證:;
(2)如圖,若,求證:是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A(-1,0)、B(4,0)、C(0,2)三點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)點(diǎn)D是該二次函數(shù)圖象上的一點(diǎn),且滿足∠DBA=∠CAO(O是坐標(biāo)原點(diǎn)),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)P是該二次函數(shù)圖象上位于一象限上的一動(dòng)點(diǎn),連接PA分別交BC,y軸與點(diǎn)E、F,若△PEB、△CEF的面積分別為S1、S2,求S1-S2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)操作與探究:如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,折痕的一端G點(diǎn)在邊BC上,BG=10.
①第一次折疊:當(dāng)折痕的另一端點(diǎn)F在AB邊上時(shí),如圖1,求折痕GF的長(zhǎng);
②第二次折疊:當(dāng)折痕的另一端點(diǎn)F在AD邊上時(shí),如圖2,證明四邊形BGEF為菱形,并求出折痕GF的長(zhǎng).
(2)拓展延伸:通過(guò)操作探究發(fā)現(xiàn)在矩形紙片ABCD中,AB=5,AD=13.如圖3所示,折疊紙片,使點(diǎn)A落在BC邊上的A′處,折痕為PQ.當(dāng)點(diǎn)A′在BC邊上移動(dòng)時(shí),折痕的端點(diǎn)P,Q也隨之移動(dòng).若限定點(diǎn)P,Q分別在AB,AD邊上移動(dòng),則點(diǎn)A′在BC邊上可移動(dòng)的最大距離是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com