【題目】某商店購進了A,B兩種家用電器,相關信息如下表:

家用電器

進價(元/件)

售價(元/件)

A

m+200

1800

B

m

1700

已知用6000元購進的A種電器件數(shù)與用5000元購進的B種電器件數(shù)相同.
(1)求表中m的值.
(2)由于A,B兩種家用電器熱銷,該商店計劃用不超過23000元的資金再購進A,B兩種電器總件數(shù)共20件,且獲利不少于13300元.請問:有幾種進貨方案?哪一種方案才能獲得最大利潤?最大利潤是多少?

【答案】
(1)解:由題意可得:

= ,

解得:m=1000,

經(jīng)檢驗得:m=1000是原方程的根,

答:m的值為1000;


(2)解:設計劃購進A種電器件數(shù)為x,則

,

解得:x≤7,

則x可取的整數(shù)有0、1、2、3、4、5、6、7這8種,

故購進方案有8種,

設所獲利潤為y,

則y=600x+700(20﹣x)=﹣100x+14000,

∵y隨x的增大而減小,

∴當x=0時,y取得最大值,最大值為14000元,

即進貨方案為A種電器0臺,B種電器20臺時,利潤最大,最大利潤為14000元.


【解析】(1)根據(jù)“用6000元購進的A種電器件數(shù)與用5000元購進的B種電器件數(shù)相同”列分式方程求解可得;(2)設計劃購進A種電器件數(shù)為x,根據(jù)購進總錢數(shù)不超過23000元及獲利不少于13300元求得x的范圍,依據(jù)題意列出總利潤y關于x的函數(shù)關系式,利用一次函數(shù)的性質求解可得.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)y=x2﹣3(m﹣1)x+3m﹣4(m為實數(shù))的圖象與x軸交于A(x1 , 0)、B(x2 , 0)(x1≠x2)兩點.
(1)求m的取值范圍;
(2)若 (O為坐標原點),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別位于反比例函數(shù)y= ,y= 在第一象限圖象上的兩點A、B,與原點O在同一直線上,且 =
(1)求反比例函數(shù)y= 的表達式;
(2)過點A作x軸的平行線交y= 的圖象于點C,連接BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,地面上兩個村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內.當該飛行器飛行至村莊C的正上方A處時,測得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時,測得∠ABD=75°.求村莊C、D間的距離( 取1.73,結果精確到0.1千米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P點的坐標為(3,2),過P點的直線AB分別交x軸和y軸的正半軸于A,B兩點,作PM⊥x軸于M點,作PN⊥y軸于N點,若△PAM的面積與△PBN的面積的比為 ,則直線AB的解析式為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖正方形ABCD的邊長為2,點E、F、G、H分別在AD、AB、BC、CD上的點,且AE=BF=CG=DH,分別將△AEF、△BFG、△CGH、△DHE沿EF、FG、GH、HE翻折,得四邊形MNKP,設AE=x,S四邊形MNKP=y,則y關于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉到△A2B2C(如圖3),點P2是A2C與AP1的交點.當旋轉角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關系?.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某中學舉辦了文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不扣分,賽后對全體參賽選手的答題情況進行了相關統(tǒng)計,整理并繪制成如下圖表:

組別

分數(shù)段

頻數(shù)(人)

頻率

1

50≤x<60

30

0.1

2

60≤x<70

45

0.15

3

70≤x<80

60

n

4

80≤x<90

m

0.4

5

90≤x<100

45

0.15


請根據(jù)以圖表信息,解答下列問題:
(1)表中m= , n=
(2)補全頻數(shù)分布直方圖;
(3)在得分前5名的同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學參加區(qū)級的比賽,用樹狀圖或列表法求選出的兩名同學恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD,
(1)求拋物線的解析式;
(2)設點P(x,y)是第一象限內該拋物線上的一個動點,△PCD的面積為S,求S關于x的函數(shù)關系式,寫出自變量x的取值范圍,并求當x取多少時,S的值最大,最大是多少?

查看答案和解析>>

同步練習冊答案