精英家教網 > 初中數學 > 題目詳情

【題目】據統(tǒng)計,1980年世界人口的分布狀況是:亞洲25.8億人,歐洲7.5億人,非洲4.6億人,拉丁美洲3.5億人,北美洲2.4億人,大洋洲0.2億人,全球合計44.0億人.

1)請制作一張統(tǒng)計圖描述以上統(tǒng)計數據.

2)請根據統(tǒng)計表格中的數據制作扇形統(tǒng)計圖.

3)從以上統(tǒng)計圖、表中,你能得到哪些信息.

【答案】見解析

【解析】試題分析: 按要求列出表格即可.

分別計算出各洲人數對應在扇形統(tǒng)計圖中的圓心角,畫圖即可.

如亞洲人口最多等.

試題解析:(11980年世界人口分布統(tǒng)計表:

地域

亞洲

歐洲

非洲

拉丁美洲

北美洲

大洋洲

全球

人口(億人)

25.8

7.5

4.6

3.5

2.4

0.2

44.0

比例

58.6%

17.0%

10.4%

8.0%

5.5%

0.5%

100%

2)各部分對應的扇形所占的圓心角分別為:亞洲:360°×58.6%210.96°.歐洲:360°×17.0%61.2°.非洲:360°×10.4%37.44°.拉丁美洲:360°×5.5%19.8°.大洋洲:360°×0.5%=1.8°.扇形統(tǒng)計圖如答圖所示.

3)學生可結合統(tǒng)計圖表.表述自己獲得的信息.合理即可.如亞洲人口最多.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知yx的部分取值滿足下表:

1)試猜想yx的函數關系可能是你們學過的哪類函數,并寫出這個函數的解析式.(不要求寫x的取值范圍)

2)簡要敘述該函數的性質.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;C1A1旋轉180°得到C2,交x軸于A2;將C2A2旋轉180°得到C3,交x軸于A3;…如此進行下去,直至得到C6若點P(11,m)在第6段拋物線C6,m=_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為洪濤同學的小測卷(每小題25分,共100分),他的得分應是______分.

姓名 洪濤 得分?

填空

2的相反數是 -2 ;

②倒數等于它本身的數是1-1;

-1的絕對值是 1 ;

2的立方是 6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】從某市近期賣出的不同面積的商 品房中隨機抽取1000套進行統(tǒng)計,并根據結果繪出如圖所示的統(tǒng)計圖,請結合圖中的信息,解析下列問題:

1)賣出面積為110130平方米的商品房 ___套,并在右圖中補全統(tǒng)計圖.

2)從圖中可知,賣出最多的商品房約占全部賣出的商品房的___.

3)假如你是房地產開發(fā)商,根據以上提供的信息,你會多建住房面積在什么范圍內的住房?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在正方形ABCD中,EAD的中點,G、F分別為AB、CD邊上的點,∠GEF=90°

1)若∠AGE=50°,求∠DFE的度數;

2)若AG=2DF=3,求GF的長;

3)拓展研究:

如圖2,在四邊形ABCD中,∠A=105°,D=120°,EAD的中點,G、F分別為ABCD邊上的點,若AG=3,DF=2GEF=90°,求GF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據要求畫圖,并回答問題.

已知:直線AB、CD相交于點O,且

過點O畫直線;

若點F所畫直線MN上任意一點點除外,且,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,FBD上,BE=DF.

(1)求證:AE=CF;

(2)若AB=6,∠COD=60°,求矩形ABCD的面積.

查看答案和解析>>

同步練習冊答案