如圖,已知O1與O2都經(jīng)過(guò)A、B兩點(diǎn),M是線段O1O2的中點(diǎn),過(guò)A點(diǎn)作EF⊥AM,EF分別與O1、O2相交于點(diǎn)E、F.求證AE=AF.

答案:
解析:

  解答:過(guò)O1作O1P⊥EF于P,過(guò)O2作O2H⊥EF于H,則有PA=AE,HA=AF,

  ∵AM⊥EF

  ∴O1P∥AM∥O2H

  又∵O1M=O2M

  ∴PA=HA

  ∴AE=AF.

  評(píng)析:在圓中解決有關(guān)弦的問(wèn)題,常常需要作“垂直于弦的直徑”作為輔助線,以構(gòu)成垂徑定理的基本圖形.


提示:

思路與技巧:遇弦作弦心距O1P、O2H,則有O1P∥MA∥O2H,據(jù)平行線分線段成比例定理,可得,從而有PA=AH.再由垂徑定理可證得結(jié)論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2都過(guò)點(diǎn)A,AO1是⊙O2的切線,⊙O1交O1O2于點(diǎn)B,連接AB并延長(zhǎng)交精英家教網(wǎng)⊙O2于點(diǎn)C,連接O2C.
(1)求證:O2C⊥O1O2;
(2)證明:AB•BC=2O2B•BO1;
(3)如果AB•BC=12,O2C=4,求AO1的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2外切,⊙O2與⊙O3外切,三個(gè)圓都與直線a、直線b相切,其中A1、A2、A3分別為切點(diǎn)⊙O1的半徑為3,⊙O2的半徑為4,則⊙O3的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A作⊙O1的切線交⊙O2于E,連接EB并延長(zhǎng)交⊙O1于C,直線CA交⊙O2于點(diǎn)D.
(1)當(dāng)A、D不重合時(shí),求證:AE=DE
(2)當(dāng)D與A重合時(shí),且BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2都過(guò)點(diǎn)A,AO1是⊙O2的切線,⊙O1交O1O2于點(diǎn)B,連接AB并延長(zhǎng)交⊙O2于點(diǎn)C,連接O2C.如果AB•BC=16,O2C=5,則tan∠AO1O2的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過(guò)⊙O1的圓心O1,且兩圓相交于A,B兩點(diǎn),C為⊙O2上的點(diǎn),連接AC交⊙O1于D點(diǎn),再連接BC,BD,AO1,AO2,O1O2,有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案