如果|a|=|b|=1,那么a+b可能得到的不同結(jié)果有


  1. A.
    4個(gè)
  2. B.
    3個(gè)
  3. C.
    2個(gè)
  4. D.
    1個(gè)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:解題升級解題快速反應(yīng)一典通八年級數(shù)學(xué) 題型:022

△ABC中:(1)如果∠A=,∠B=,那么∠C=________;(2)如果∠C=,∠B-∠A=,那么∠A=________,∠B=________;(3)如果∠B-∠A-∠C=,那么∠B=________;(4)如果∠A∶∠B∶∠C=2∶3∶4,那么∠A=________,∠B=________,∠C=________;(5)如果∠C+∠A=2∠B,∠C-∠A=,那么∠A=________,∠B=________,∠C=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測叢書 八年級數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:044

函數(shù)的奇偶性

  一般地,如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數(shù);如果函數(shù)y=f(x)對于自變量取值范圍內(nèi)的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數(shù).

  例如:f(x)=x3+x.

  當(dāng)x取任意實(shí)數(shù),

  f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)

  即f(-x)=-f(x)

  所以f(x)=x3+x為奇函數(shù).

  又如:f(x)=|x|,

  當(dāng)x取任意實(shí)數(shù)時(shí),f(-x)=|-x|=|x|=f(x),

  即f(-x)=f(x)

  所以f(x)為偶函數(shù).

問題:(1)下列函數(shù):

①y=x4;②y=x2+1;③y=;④y=;⑤y=x+

所有奇函數(shù)是________,所有偶函數(shù)是________(只填序號);

(2)請你再分別寫出一個(gè)奇函數(shù),一個(gè)偶函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省南京市溧水縣孔鎮(zhèn)中學(xué)九年級下學(xué)期第一次學(xué)情調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題

銷售甲、乙兩種商品所得利潤分別為y1(萬元)和y2(萬元),它們與投入資金u的關(guān)系式為y1,y2u.如果將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲商品的投資為x(萬元).
(1)求經(jīng)營甲、乙兩種商品的總利潤y(萬元)與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)設(shè)=t,試寫出y關(guān)于t的函數(shù)關(guān)系式,并求出經(jīng)營甲、乙兩種商品各投入多少萬元時(shí)使得總利潤最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市九年級下學(xué)期第一次學(xué)情調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

銷售甲、乙兩種商品所得利潤分別為y1(萬元)和y2(萬元),它們與投入資金u的關(guān)系式為y1,y2u.如果將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲商品的投資為x(萬元).

(1)求經(jīng)營甲、乙兩種商品的總利潤y(萬元)與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

(2)設(shè)=t,試寫出y關(guān)于t的函數(shù)關(guān)系式,并求出經(jīng)營甲、乙兩種商品各投入多少萬元時(shí)使得總利潤最大.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年北京師大附中九年級第一學(xué)期期中考試數(shù)學(xué)卷 題型:選擇題

在平面直角坐標(biāo)系中,如果拋物線y=2x2+1不動(dòng),而把x軸、y軸分別向上、向右平移2個(gè)單位,那么在新坐標(biāo)系下拋物線的解析式是 (    )

A.y=2(x-2)2+ 3     B.y=2(x-2)2-1

       C.y=2(x + 2)2-1     D.y=2(x + 2)2 + 3

 

查看答案和解析>>

同步練習(xí)冊答案