如圖,在銳角△ABC中,高CD、BE相交于點(diǎn)H,則圖中所有與△CEH相似(除△CEH自身外)的三角形的個(gè)數(shù)是


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:由在銳角△ABC中,高CD、BE相交于點(diǎn)H,即可得∠BDH=∠CEH=90°,又由對(duì)頂角相等,根據(jù)有兩角對(duì)應(yīng)相等的三角形相似,即可證得△BHD∽△CHE,同理可證得:△ADC∽△HEC,△ABE∽△HBD,即可求得答案.
解答:∵在銳角△ABC中,高CD、BE相交于點(diǎn)H,
∴∠BDH=∠CEH=90°,
∵∠BHD=∠CHE,
∴△BHD∽△CHE.
∵∠ADC=∠HEC=90°,∠ACD=∠HCE,
∴△ADC∽△HEC,
同理:△ABE∽△HBD,
∴△CEH∽△BDH∽△CDA∽△BEA.
∴與△CEH相似(除△CEH自身外)的三角形的個(gè)數(shù)是3個(gè).
故選C.
點(diǎn)評(píng):此題考查了相似三角形的判定.解題的關(guān)鍵是數(shù)形結(jié)合思想的應(yīng)用與有兩角對(duì)應(yīng)相等的三角形相似定理的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,以BC為直徑的半圓O分別交AB,AC與D、E兩點(diǎn),且cosA=
3
3
,則S△ADE:S四邊形DBCE的值為( 。
A、
1
2
B、
1
3
C、
3
2
D、
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,a>b>c,以某任意兩個(gè)頂點(diǎn)為頂點(diǎn)作矩形,第三個(gè)頂點(diǎn)落在以這兩個(gè)頂點(diǎn)所確定的對(duì)邊上,這樣可以作三個(gè)面積相等的矩形,請(qǐng)問(wèn)這三個(gè)矩形的周長(zhǎng)大小關(guān)系如何?(記ta、tb、tc分別以a、b、c為邊的矩形的周長(zhǎng))答:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,在銳角△ABC中,AB>AC,AD⊥BC于D,以AD為直徑的⊙O分別交AB,AC于E,F(xiàn),連接DE,DF.
(1)求證:∠EAF+∠EDF=180°;
(2)已知P是射線DC上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到PD=BD時(shí),連接AP,交⊙O于G,連接DG.設(shè)∠EDG=∠α,∠APB=∠β,那么∠α與∠β有何數(shù)量關(guān)系?試證明你的結(jié)論.[在探究∠α與∠β的數(shù)量關(guān)系時(shí),必要時(shí)可直接運(yùn)用(1)的結(jié)論進(jìn)行推理與解答]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在銳角△ABC中,∠ABC的平分線交AC于點(diǎn)D,AB邊上的高CE交BD于點(diǎn)M,過(guò)點(diǎn)M作BC的垂線段MN,若EC=4,∠BCE=45°,則MN=
 
(結(jié)果保留三位有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角△ABC中,AB=4,∠BAC=45°.∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn).則BM+MN的最小值是
2
2
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案