如圖①是拋物線(xiàn)形拱橋,當(dāng)水面在n時(shí),拱頂離水面2米,水面寬4米.
(1)求出拱橋的拋物線(xiàn)解析式;
(2)若水面下降2.5米,則水面寬度將增加多少米?(圖②是備用圖)
(1)建立如圖的直角坐標(biāo)系,
設(shè)拱橋的拋物線(xiàn)解析式為:
y=ax2(a≠0),
將點(diǎn)(2,-2)代入得:4a=-2,
解得:a=-
1
2
,
∴拱橋的拋物線(xiàn)解析式為y=-
1
2
x2
,
答:拱橋的拋物線(xiàn)解析式為y=-
1
2
x2


(2)由題意得:
當(dāng)y=-4.5時(shí),-
1
2
x2=-4.5
,
解得:x=±3,
∴此時(shí)水面寬度為6米,
∴水面寬度將增加2米.
答:水面寬度將增加2米.
故答案為①拱橋的拋物線(xiàn)解析式為y=-
1
2
x2
,
②水面寬度將增加2米.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線(xiàn)y=
1
4
x2+1
的頂點(diǎn)為M,直線(xiàn)l過(guò)點(diǎn)F(0,2)且與拋物線(xiàn)分別相交于A(yíng)、B兩點(diǎn).過(guò)點(diǎn)A、B分別作x軸的垂線(xiàn),垂足分別為點(diǎn)C、D,連接CF、DF.
(1)如圖:
①若A(-1,
5
4
),求證:AC=AF;
②若A(m,n),判斷以CD為直徑的圓與直線(xiàn)l的位置關(guān)系.并加以證明.
(2)若直線(xiàn)l繞點(diǎn)F旋轉(zhuǎn),且與x軸交于點(diǎn)P,PC×PD=8.求直線(xiàn)l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知如圖,過(guò)O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0)、交y軸的負(fù)半軸于點(diǎn)D,弧OBM與弧OAM關(guān)于x軸對(duì)稱(chēng),其中A、B、C是過(guò)點(diǎn)P且垂直于x軸的直線(xiàn)與兩弧及圓的交點(diǎn).
(1)當(dāng)m=4時(shí),
①填空:B的坐標(biāo)為_(kāi)_____,C的坐標(biāo)為_(kāi)_____,D的坐標(biāo)為_(kāi)_____;
②若以B為頂點(diǎn)且過(guò)D的拋物線(xiàn)交⊙P于點(diǎn)E,求此拋物線(xiàn)的函數(shù)關(guān)系式和寫(xiě)出點(diǎn)E的坐標(biāo);
③除D點(diǎn)外,直線(xiàn)AD與②中的拋物線(xiàn)有無(wú)其它公共點(diǎn)并說(shuō)明理由.
(2)是否存在實(shí)數(shù)m,使得以B、C、D、E為頂點(diǎn)的四邊形組成菱形?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(2,0),直線(xiàn)y=x+2與該二次函數(shù)的圖象交于A(yíng)、B兩點(diǎn),其中點(diǎn)A在y軸上(如圖示)
(1)求該二次函數(shù)的解析式;
(2)P為線(xiàn)段AB上一動(dòng)點(diǎn)(A、B兩端點(diǎn)除外),過(guò)P作x軸的垂線(xiàn)與二次函數(shù)的圖象交于點(diǎn)Q,設(shè)線(xiàn)段PQ的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求出l與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(3)在(2)的條件下,線(xiàn)段AB上是否存在一點(diǎn)P,使四邊形PQMA為梯形?若存在,求出點(diǎn)P的坐標(biāo),并求出梯形的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線(xiàn)BC的解析式;
(2)求經(jīng)過(guò)B,C,A三點(diǎn)的拋物線(xiàn)y=ax2+bx+c的解析式;若拋物線(xiàn)的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線(xiàn)BC上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y1=x2-1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線(xiàn)向右平移4個(gè)單位得拋物線(xiàn)y2,兩條拋物線(xiàn)相交于點(diǎn)C.
(1)請(qǐng)直接寫(xiě)出拋物線(xiàn)y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿(mǎn)足∠CPA=∠OBA,求出所有滿(mǎn)足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線(xiàn)y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=ax2上的點(diǎn)D、C與x軸上的點(diǎn)A(-6,0)、B(4,0)構(gòu)成平行四邊形ABCD,CD與y軸交于點(diǎn)E(0,6),求a的值及直線(xiàn)BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無(wú)論m為任何實(shí)數(shù),該二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)當(dāng)該二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,6)時(shí),求二次函數(shù)的解析式;
(3)將直線(xiàn)y=x向下平移2個(gè)單位長(zhǎng)度后與(2)中的拋物線(xiàn)交于A(yíng)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),一個(gè)動(dòng)點(diǎn)P自A點(diǎn)出發(fā),先到達(dá)拋物線(xiàn)的對(duì)稱(chēng)軸上的某點(diǎn)E,再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動(dòng)到點(diǎn)B.求使點(diǎn)P運(yùn)動(dòng)的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=-
1
2
x2+bx+4
上有不同的兩點(diǎn)E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求拋物線(xiàn)的解析式;
(2)如圖,拋物線(xiàn)y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點(diǎn)A和B,M為AB的中點(diǎn),∠PMQ在A(yíng)B的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長(zhǎng)為m(m>0),BC的長(zhǎng)為n,求n和m之間的函數(shù)關(guān)系式;
(3)當(dāng)m,n為何值時(shí),∠PMQ的邊過(guò)點(diǎn)F?

查看答案和解析>>

同步練習(xí)冊(cè)答案