分析:(1)利用多項式的乘法法則計算即可;
(2)首先計算多項式的乘法,然后合并同類項即可;
(3)首先利用平方差公式計算兩個多項式相乘,然后合并同類項即可;
(4)利用平方差公式即可求解;
(6)利用平方差公式即可求解;
(7)首先計算乘方與乘法,然后合并同類項;
(8)首先計算乘方與乘法,然后合并同類項.
解答:解:(1)
(x-3y)(x-y),
=
x2-xy-3xy+y2,
=
x2-xy+y2;
(2)4x
2+(-2x+3)(-2x-3),
=4x
2+[(-2x)
2-3
2],
=4x
2+[4x
2-9],
=8x
2-9;
(3)(a+b)(a-b)+b
2,
=(a
2-b
2)+b
2,
=a
2;
(4)解:(2a-b+3)(2a-3+b),
=[2a-(b-3)][2a+(b-3)],
=(2a)
2-(b-3)
2,
=4a
2-b
2+6b-9;
(5)
(-3)0+(-)-2÷|-2|,
=1+4÷2,
=1+2,
=3;
(6)(2x+3y)(3x-2y)2x•3x-2x•2y+3y•3x-3y•2y,
=6x
2-4xy+9xy-6y
2,
=6x
2+5xy-6y
2;
(7)-t(-t)
2-t
3,
=-t•t
2-t
3,
=-t
3-t
3,
=-2t
3;
(8)(-2a)
3-(-a)•(3a)
2,
=-8a
3+9a
3,
=a
3.
點評:本題主要考查了多項式的計算,正確理解平方差公式是解題的關(guān)鍵.