如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A、B,則它的解析式是( 。
A.y=2x+3B.y=-2x+3C.y=-
3
2
x+3
D.y=-
2
3
x+3

把A(0,3)和B(2,0)代入y=kx+b得
b=3
2k+b=0

解得
k=-
3
2
b=3

所以直線解析式為y=-
3
2
x+3.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線l1⊥x軸于點(diǎn)A(2,0),點(diǎn)B是直線l1上的動(dòng)點(diǎn).直線l2:y=x+1交l1于點(diǎn)C,過點(diǎn)B作直線l3垂直于l2,垂足為D,過點(diǎn)O,B的直線l4交l2于點(diǎn)E,當(dāng)直線l1,l2,l3能圍成三角形時(shí),設(shè)該三角形面積為S1,當(dāng)直線l2,l3,l4能圍成三角形時(shí),設(shè)該三角形面積為S2
(1)若點(diǎn)B在線段AC上,且S1=S2,則B點(diǎn)坐標(biāo)為______;
(2)若點(diǎn)B在直線l1上,且S2=
3
S1,則∠BOA的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點(diǎn)C,直線AD交x軸正半軸于點(diǎn)D.
(1)求直線AB的函數(shù)解析式;
(2)根據(jù)圖象直接回答,不等式k1x+b1>k2x+b2的解集;
(3)若點(diǎn)M為x軸一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí),使AM+BM的值最。壳蟪龃藭r(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,兩條直線l1和l2的交點(diǎn)坐標(biāo)可以看作下列方程組中的解(  )
A.
y=2x+1
y=x+2
B.
y=-x+3
y=3x-5
C.
y=-2x+1
y=x-1
D.
y=-2x+1
y=x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=-
3
3
x+2
與y軸交于點(diǎn)A,與x軸交于點(diǎn)B;若點(diǎn)P是直線AB上的一動(dòng)點(diǎn),坐標(biāo)平面中存在點(diǎn)Q,使以O(shè)、B、P、Q為頂點(diǎn)的四邊形為菱形,則點(diǎn)Q的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰三角形的周長為12cm,若底邊長為ycm,一腰長為xcm.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線y=kx+b與x軸、y軸分別交于點(diǎn)A、B兩點(diǎn),OA=OB=1,動(dòng)點(diǎn)P在線段AB上移動(dòng),以P為頂點(diǎn)作∠OPQ=45°,射線PQ交x軸于點(diǎn)Q.
(1)求直線AB的解析式.
(2)△OPQ能否是等腰三角形?如果能,請求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
(3)無論m為何值,(2)中求出的P點(diǎn)是否始終在直線y=mx+
1-m
2
(m≠0)上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二元一次方程2x-y=2.
(1)請任意寫出此方程的三組解;
(2)若
x=x0
y=y0
為此方程的一組解,我們規(guī)定(x0,y0)為某一點(diǎn)的坐標(biāo),請根據(jù)你在(1)中寫出的三組解,對應(yīng)寫出三個(gè)點(diǎn)的坐標(biāo),并將這三個(gè)點(diǎn)描在平面直角坐標(biāo)系中;
(3)觀察這三個(gè)點(diǎn)的位置,你發(fā)現(xiàn)了什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為______.

查看答案和解析>>

同步練習(xí)冊答案