【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1,);點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.
(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.
【答案】(1)二次函數(shù)的解析式為y=x2;(2)證明見試題解析;(3)滿足條件的點P的坐標為(2,3)或(﹣2,3).
【解析】
試題分析:(1)根據(jù)題意可設函數(shù)的解析式為y=ax2,將點A代入函數(shù)解析式,求出a的值,繼而可求得二次函數(shù)的解析式;
(2)過點P作PB⊥y軸于點B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,結(jié)合平行線的性質(zhì),可得出結(jié)論;
(3)首先可得∠FMH=30°,設點P的坐標為(x, x2),根據(jù)PF=PM=FM,可得關(guān)于x的方程,求出x的值即可得出答案.
試題解析:(1)∵二次函數(shù)圖象的頂點在原點O,
∴設二次函數(shù)的解析式為y=ax2,
將點A(1,)代入y=ax2得:a=,
∴二次函數(shù)的解析式為y=x2;
(2)∵點P在拋物線y=x2上,
∴可設點P的坐標為(x, x2),
過點P作PB⊥y軸于點B,則BF=|x2﹣1|,PB=|x|,
∴Rt△BPF中,
PF==x2+1,
∵PM⊥直線y=﹣1,
∴PM=x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥y軸,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP;
(3)當△FPM是等邊三角形時,∠PMF=60°,
∴∠FMH=30°,
在Rt△MFH中,MF=2FH=2×2=4,
∵PF=PM=FM,
∴x2+1=4,
解得:x=±2,
∴x2=×12=3,
∴滿足條件的點P的坐標為(2,3)或(﹣2,3).
科目:初中數(shù)學 來源: 題型:
【題目】到三角形三頂點距離相等的點是( ),到三角形三邊距離相等的點是( )
A. 三條角平分線的交點,三條垂直平分線的交點
B. 三條角平分線的交點,三條中線的交點
C. 三條垂直平分線的交點,三條中線的交點
D. 三條垂直平分線的交點,三條角平分線的交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先觀察下面的解題過程,然后解答問題:
題目:化簡:(2+1)(22+1)(24+1)
解:
(2+1)(22+1)(24+1)
=(2﹣1)(2+1)(22+1)(24+1)
=(22﹣1)(22+1)(24+1)
=(24﹣1)(24+1)
=28﹣1.
問題:
(1)化簡(2+1)(22+1)(24+1)(28+1)…(264+1).
(2)求(3+1)(32+1)(34+1)(38+1)…(3n+1)﹣ (n可以寫成2n的形式,k為正整數(shù))的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時,已知煙臺到北京的普快列車里程月1026千米,高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到
當日8:40從煙臺到該是的高鐵票,而且從該市火車站到會議地點最多需要1.5小時.試問在高鐵列車準點到達的情況下他能在開會之前趕到嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)圖②是一個直角梯形.該圖案可以看作由2個邊長為a、b、c的直角三角形(圖①)和1個腰長為c的等腰直角三角形拼成。
(1)根據(jù)圖②和梯形面積的不同計算方法,可以驗證一個含a、b、c的等式,請你寫出這個等式,并寫出其推導過程;
(2)若直角三角形的邊長a、b、c滿足條件:a―b=1, ab=4.試求出c的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對代數(shù)式x2﹣1的意義,下列說法不正確的是( )
A. x與1的差的平方 B. x的平方與1的差 C. x與1的平方差 D. 比x的平方少1的數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣大力推進義務教育均衡發(fā)展,加強學校標準化建設,計劃用三年時間對全縣學校的設施和設備進行全面改造,2014年縣政府已投資5億元人民幣,若每年投資的增長率相同,預計2016年投資7.2億元人民幣,那么每年投資的增長率為( 。
A.20%
B.40%
C.-220%
D.30%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y1=﹣x﹣1與反比例函數(shù)y2=的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.
(3)求直線與雙曲線的另一個交點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com