精英家教網 > 初中數學 > 題目詳情
附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是______.

(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內)上的一個動點,是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.

【答案】分析:(1)連接AD,AC,易證△ACD∽△PAD,根據相似三角形的對應邊的比相等即可求解;
(2)①已知拋物線的頂點和拋物線上的幾點,即可利用待定系數法求解析式;
②C點坐標為(1,4),根據三角形的面積公式即可求解;
③根據S△PAB=S△CAB即可得到一個關于點P的橫坐標的方程,即可求出x的值.進而得到P點的坐標.
解答:解:(1)連接AC

∵AD=BD,
∴∠ACD=∠ABD=∠DAB
又∵∠ADP=∠CDA
∴△ACD∽△PAD
=
∴設PD=x,則CD=x+6,
=
解得:x=-8或2
所以CD=6+2=8;

(2)解:①設拋物線的解析式為:y1=a(x-1)2+4(1分)
把A(3,0)代入解析式求得a=-1
所以y1=-(x-1)2+4=-x2+2x+3(2分)
設直線AB的解析式為:y2=kx+b
求得B點的坐標為(0,3)(3分)
把A(3,0),B(0,3)代入y2=kx+b中
解得:k=-1,b=3
所以y2=-x+3(4分)
②因為C點坐標為(1,4)
所以當x=1時,y1=4,y2=2
所以CD=4-2=2(6分)(7分)
③假設存在符合條件的點P,設點P的橫坐標是x,△PAB的鉛垂高為h,
則h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x(8分)
由S△PAB=S△CAB
得:,化簡得:4x2-12x+9=0
解得,,
代入y1=-x2+2x+3中,
解得P點坐標為(10分)
點評:主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網附加題:已知:如圖,正比例函數y=ax的圖象與反比例函數y=
kx
的圖象交于點A(3,2)
(1)試確定上述正比例函數和反比例函數的表達式;
(2)根據圖象回答,在第一象限內,當x取何值時,反比例函數的值大于正比例函數的值;
(3)M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MN∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

15、附加題:已知:如圖∠1=∠2,∠C=∠D,試探究∠A=∠F相等嗎?試說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、附加題:已知:如圖,點O是等腰直角△ABC斜邊AB的中點,D為BC邊上任意一點.
操作:在圖12中作OE⊥OD交AC于E,連接DE.
探究OD、BD、CD三條線段之間有何等量關系?請?zhí)骄空f明.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網附加題:已知,如圖,四邊形ABCD中,AB=BC=1,CD=
3
,DA=1,且∠B=90°.試求:
(1)∠BAD的度數;
(2)四邊形ABCD的面積(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

28、(附加題)已知:如圖,a∥b,∠1=70°,則∠3的度數為
110
度.

查看答案和解析>>

同步練習冊答案