已知三角形ABC中,AB=AC,點A,B,C在以O為圓心的同一個圓上,圓心O到BC的距離為3cm,圓的半徑為7cm,求腰長AB.
解:分圓心在內(nèi)接三角形內(nèi)和在內(nèi)接三角形外兩種情況討論,
如圖一,假若∠A是銳角,△ABC是銳角三角形,
連接OA,OB,
∵OD=3cm,OB=7cm,
∴AD=10cm,
∴BD=
=2
cm,
∵OD⊥BC,根據(jù)垂徑定理和等腰三角形的性質(zhì)可得,AD⊥BC,
∴AD=
=2
cm;
如圖二,若∠A是鈍角,則△ABC是鈍角三角形,
和圖一解法一樣,只是AD=7-3=4cm,
∴AB=
=2
cm,
綜上可得腰長AB=2
cm或2
cm.
分析:可根據(jù)勾股定理先求得BD的值,再根據(jù)勾股定理可求得AB的值.注意:圓心在內(nèi)接三角形內(nèi)時,AD=10cm;圓心在內(nèi)接三角形外時,AD=4cm.
點評:此題主要考查了垂徑定理和勾股定理,注意分圓心在內(nèi)接三角形內(nèi)和在內(nèi)接三角形外兩種情況討論,有一定難度.