【題目】八(1)班同學(xué)為了解2015年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,
月均用水量x(t) | 頻數(shù)(戶) | 頻率 |
0<x≤5 | 6 | 0.12 |
5<x≤10 | m | 0.24 |
10<x≤15 | 16 | 0.32 |
15<x≤20 | 10 | 0.20 |
20<x≤25 | 4 | n |
60≤x<70 | 2 | 0.04 |
請(qǐng)解答以下問(wèn)題:
(1)求出嗎、M,n的值,并把頻數(shù)分布直方圖補(bǔ)充完整;
(2)若該小區(qū)有1000戶家庭,求該小區(qū)月均用水量超過(guò)10t的家庭大約有多少戶?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是等腰△ABC底邊上的高,且tanB=.AC上有一點(diǎn)E,滿足AE:CE=2:3.那么tan∠ADE的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有三張正面分別標(biāo)有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽出一張記下數(shù)字.
(1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結(jié)果;
(2)將第一次抽出的數(shù)字作為點(diǎn)的橫坐標(biāo)x,第二次抽出的數(shù)字作為點(diǎn)的縱坐標(biāo)y,求點(diǎn)(x,y)落在雙曲線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠AOB=90°,OM是∠AOB的平分線,按以下要求解答問(wèn)題:
(1)如圖1,將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),兩直角邊分別與OA,OB交于點(diǎn)C,D.
①比較大小:PC______PD. (選擇“>”或“<”或“=”填空);
②證明①中的結(jié)論.
(2)將三角板的直角頂點(diǎn)P在射線OM上移動(dòng),一直角邊與邊OA交于點(diǎn)C,且OC=1,另一直角邊與直線OB,直線OA分別交于點(diǎn)D,E,當(dāng)以P,C,E為頂點(diǎn)的三角形與△OCD相似時(shí),試求的長(zhǎng).(提示:請(qǐng)先在備用圖中畫(huà)出相應(yīng)的圖形,再求的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有女生1200人,估計(jì)為“優(yōu)秀”等級(jí)的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“測(cè)量物體的高度”活動(dòng)中,某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測(cè)量學(xué)校里的兩棵樹(shù)的高度,在同一時(shí)刻的陽(yáng)光下,他們分別做了以下工作:
小芳:測(cè)得一根長(zhǎng)為1米的竹竿的影長(zhǎng)為0.8米;
小麗:測(cè)量甲樹(shù)的影長(zhǎng)為4米(如圖1);
小華:發(fā)現(xiàn)乙樹(shù)的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上(如圖2),墻壁上的影長(zhǎng)為1.2米,落在地面上的影長(zhǎng)為2.4米.
(1)請(qǐng)直接寫出甲樹(shù)的高度為 米;
(2)求乙樹(shù)的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD,DE,若CF=2,AF=3.給出下列結(jié)論:①△ADF∽△AED; ②FG=2;③tan∠E=; ④S△DEF=4,其中正確的是( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB中點(diǎn),AE∥CD,CE∥AB.
(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.
(2)連接BE,若∠BAC=30°,CE=1,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com