【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動點P、Q分別從點A、B同時開始移動,點P的速度為1 cm/秒,點Q的速度為2 cm/秒,點Q移動到點C后停止,點P也隨之停止運動下列時間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

【答案】B

【解析】解:設(shè)動點PQ運動t秒后,能使PBQ的面積為15cm2,則BP為(8﹣tcm,BQ2tcm,由三角形的面積計算公式列方程得×(8﹣t)×2t=15,解得t1=3,t2=5(當(dāng)t=5時,BQ=10,不合題意,舍去).故當(dāng)動點P,Q運動3秒時,能使PBQ的面積為15cm2故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機(jī)采訪該小區(qū)的位居民,得到這位居民一周內(nèi)使用共享單車的次數(shù)分別為:,,,,,,,

(1)這組數(shù)據(jù)的中位數(shù)是________,眾數(shù)是________;

(2)計算這位居民一周內(nèi)使用共享單車的平均次數(shù);

(3)若該小區(qū)有名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,由求根公式x12=可推出x1+x2=﹣,x1x2=,我們把這個命題叫做韋達(dá)定理.設(shè)α,β是方程x2﹣5x+3=0的兩根,請根據(jù)韋達(dá)定理求下列各式的值:

(1)α+β=   ,αβ=   ;

(2)

(3)2α2﹣3αβ+10β.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ACBD,請先作圖再解決問題.

(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)

①作BE平分∠ABDAC于點E;

②在BA的延長線上截取AF=BA,連接EF

(2)判斷△BEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,如楊輝三角就是一例.如圖,這個三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和,它給出了(a+bnn為正整數(shù))的展開式(按a的次數(shù)降冪排列)的系數(shù)規(guī)律例如,在三角形中第一行的三個數(shù)12,1,恰好對應(yīng)(a+b2a2+2ab+b2展開式中的系數(shù);第四行的四個數(shù)13,31,恰好對應(yīng)著(a+b3a3+3ab+3ab2+b3展開式中的系數(shù).結(jié)合對楊輝三角的理解完成以下問題

1)(a+b2展開式a2+2ab+b2中每一項的次數(shù)都是   次;

a+b3展開式a3+3a2b+3ab2+b3中每一項的次數(shù)都是   次;

那么(a+bn展開式中每一項的次數(shù)都是   次.

2)寫出(a+14的展開式   

3)拓展應(yīng)用:計算(x+15+x16+x+17的結(jié)果中,x5項的系數(shù)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個正根,則實數(shù)a的取值范圍是(  )

A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,從一個格點移動到與之相距的另一個格點的運動稱為一次跳馬變換,例如,在4×4的正方形網(wǎng)格圖形中(如圖1),從點A經(jīng)過一次跳馬變換可以到達(dá)點B,C,D,E等處.現(xiàn)有10×10的正方形網(wǎng)格圖形(如圖2),則從該正方形的頂點M經(jīng)過跳馬變換到達(dá)與其相對的頂點N,最少需要跳馬變換的次數(shù)是( 。

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長方體敞口玻璃罐,長、寬、高分別為16 cm、6 cm6 cm,在罐內(nèi)點E處有一小塊餅干碎末,此時一只螞蟻正好在罐外壁,在長方形ABCD中心的正上方2 cm處,則螞蟻到達(dá)餅干的最短距離是多少cm.(  )

A. 7B.

C. 24D.

查看答案和解析>>

同步練習(xí)冊答案