【題目】如圖,已知拋物線yax2x4的對稱軸是直線x3,且與x軸相交于A,B兩點(B點在A點右側(cè)),與y軸交于C點.

(1)求拋物線的解析式;

(2)A,B兩點的坐標(biāo);

(3)M是拋物線上BC兩點之間的一個動點(不與B,C重合),過點My軸的平行線,交直線BC于點N,當(dāng)MN3時,求M點的坐標(biāo).

【答案】(1) y=-x2x4 (2)A的坐標(biāo)為(2,0),點B的坐標(biāo)為(8,0);(3)M的坐標(biāo)為(2,6)(6,4).

【解析】

1)由拋物線的對稱軸為直線x=3,利用二次函數(shù)的性質(zhì)即可求出a值,進而可得出拋物線的解析式;

2)利用二次函數(shù)圖象上點的坐標(biāo)特征,即可求出點A、B的坐標(biāo);

3)利用二次函數(shù)圖象上點的坐標(biāo)特征可求出點C的坐標(biāo),由點B、C的坐標(biāo),利用待定系數(shù)法即可求出直線BC的解析式,設(shè)點M的坐標(biāo)為(m,-m2+m+4),則點N的坐標(biāo)為(m,-m+4),進而可得出MN=|-m2+2m|,結(jié)合MN=3即可得出關(guān)于m的含絕對值符號的一元二次方程,解之即可得出結(jié)論.

(1)∵拋物線yax2x4的對稱軸是直線x3

,解得:a=-,

∴拋物線的解析式為y=-x2x4

(2)當(dāng)y0時,- x2x40,解得:x1=-2,x28,

∴點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(8,0)

(3)當(dāng)x0時,y=-x2x44,

∴點C的坐標(biāo)為(0,4).設(shè)直線BC的解析式為ykxb(k≠0)

B(8,0),C(0,4)代入ykxb,得,解得:

∴直線BC的解析式為y=-x4

設(shè)點M的坐標(biāo)為,則點N的坐標(biāo)為,其中0<m<8

MN,

又∵MN3,

∴-m22m3,解得:m12,m26,

∴點M的坐標(biāo)為(2,6)(6,4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCDAB=2,BC=10,點EAD上一點,且AE=AB,點F從點E出發(fā),向終點D運動,速度為1cm/s,以BF為斜邊在BF上方作等腰直角BFG,以BGBF為鄰邊作BFHG,連接AG.設(shè)點F的運動時間為t秒.

1)試說明:ABGEBF;

2)當(dāng)點H落在直線CD上時,求t 的值;

3)點FE運動到D的過程中,直接寫出HC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高速鐵路位于某省南部,是國家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟寧、菏澤,與鄭徐客運專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個高鐵維護站,如圖①,現(xiàn)在想過B處在河上修一座橋,需要知道河寬,一測量員在河對岸的A處測得B在它的東北方向,測量員從A點開始沿岸邊向正東方向前進300米到達點C處,測得BC的北偏西30度方向上.

1)求所測之處河的寬度;(結(jié)果保留的十分位)

2)除(1)的測量方案外,請你再設(shè)計一種測量河寬的方案,并在圖②中畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC的斜邊AB在平面直角坐標(biāo)系的x軸上,點C1,3)在反比例函數(shù)y的圖象上,且sinBAC,則點B的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,點PBC上的一點,PNAC于點N,PMAB于點M,CGAB于點G點.

1)則線段CG、PM、PN三者之間的數(shù)量關(guān)系是  ;

2)如圖,若點PBC的延長線上,則線段CG、PM、PN三者是否還有上述關(guān)系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關(guān)系,并證明你的猜想;

3)如圖,點E在正方形ABCD的對角線AC上,且AEAD,點PBE上任一點,PNAB于點N,PMAC于點M,若正方形ABCD的面積是12,請直接寫出PM+PN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了創(chuàng)建全國文明城市知識競賽活動,初一年級全體同學(xué)參加了競賽.收集數(shù)據(jù):現(xiàn)隨機抽取初一年級30名同學(xué)創(chuàng)文知識競賽成績,分?jǐn)?shù)如下(單位:分):

90

85

68

92

81

84

95

93

87

89

78

99

89

85

97

88

81

95

86

98

95

93

89

86

84

87

79

85

89

82

⑴請將圖表中空缺的部分補充完整;

⑵學(xué)校決定表彰創(chuàng)文知識競賽成績在90分以上的同學(xué),根據(jù)上表統(tǒng)計結(jié)果估計該校初一年級360人中,約有多少人將獲得表彰;

創(chuàng)文知識競賽中,受到表彰的小紅同學(xué)得到了印有龔扇、剪紙、彩燈、恐龍圖案的四枚紀(jì)念章,她從中選取兩枚送給弟弟,則小紅送給弟弟的兩枚紀(jì)念章中,恰好有恐龍圖案的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點在邊上,且,點的中點,點為邊上的動點,當(dāng)點上移動時,使四邊形周長最小的點的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面數(shù)據(jù),得到條形統(tǒng)計圖:

樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:

統(tǒng)計量

平均數(shù)

眾數(shù)

中位數(shù)

數(shù)值

23

m

21

根據(jù)以上信息,解答下列問題:

(1)上表中眾數(shù)m的值為   ;

(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)   來確定獎勵標(biāo)準(zhǔn)比較合適.(填平均數(shù)”、“眾數(shù)中位數(shù)”)

(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當(dāng)燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應(yīng)該設(shè)計為多少米(結(jié)果保留根號)?

查看答案和解析>>

同步練習(xí)冊答案