閱讀下面的問題,并解答題(1)和題(2)。

    如圖①所示,P是等腰△ABC的底邊BC上任一點,PE⊥AB于E,PF⊥AC于F,BH是腰AC上的高,求證:PE+PF=BH。

    ,

   

    因為AB=AC,所以BH=PE+PF

    按照上述證法或用其它方法證明下面兩題:

    (1)如圖②,P是邊長為2的正方形ABCD邊CD上任意一點,且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。

    (2)如圖③,在△ABC中,∠A=90°,D是AB上一點,且BD=CD,過BC

求PE+PF的值

   

    解:(1)在△BOC中,∠COB=90°,BC=2,CO=BO

      

      

    (2)如圖,連結(jié)PD,由面積關(guān)系得:

      

    由題意知,

   

      

    下面求AC的值:

    設(shè)AD=x,則BD=CD=3x,

   

    解得:x=2(負值舍去) 

      

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( 。
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:數(shù)學公式
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=數(shù)學公式,則AD=csinB
Rt△ACD中,sinC=數(shù)學公式,則AD=bsinC
所以c sinB=b sinC,即數(shù)學公式
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=數(shù)學公式,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:期末題 題型:探究題

閱讀下面的問題,并解答題(1)和題(2)。
如圖①所示,P是等腰△ABC的底邊BC上任一點,PE⊥AB于E,PF⊥AC于F,BH是腰AC上的高。求證:PE+PF=BH。
證明:連接AP,則有S△ABC=S△ABP+S△ACP 
AC×BH=AC×PF+AB×PE
因為AB=AC,所以BH=PE+PF
按照上述證法或用其它方法證明下面兩題:
(1)如圖②,P是邊長為2的正方形ABCD邊CD上任意一點,且PE⊥DB于E,PF⊥CA于F,求PE+PF的值。
(2)如圖③,在△ABC中,∠A=90°,D是AB上一點,且BD=CD,過BC上任一點P做PE⊥AB于E,PF⊥DC于F,已知AD:BD=1:3,BC= 4,求PE+PF的值。

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(32)(解析版) 題型:解答題

閱讀下面的材料,并回答所提出的問題:如圖所示,在銳角三角形ABC中,求證:
這個三角形不是一個直角三角形,不能直接使用銳角三角函數(shù)的知識去處理,所以必須構(gòu)造直角三角形,過點A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過點A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=,則AD=csinB
Rt△ACD中,sinC=,則AD=bsinC
所以c sinB=b sinC,即
(1)在上述分析證明過程中,主要用到了下列三種數(shù)學思想方法的哪一種( )
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

同步練習冊答案