已知:△ABC是等邊三角形,△BDC是等腰三角形,其中∠BDC=120°,過點D作∠EDF=60°,分別交AB于E,交AC于F,連接EF.
(1)若BE=CF,求證:①△DEF是等邊三角形;②BE+CF=EF.
(2)若BE≠CF,即E、F分別是線段AB,AC上任意一點,BE+CF=EF還會成立嗎?請說明理由.
分析:(1)延長AB到N,使BN=CF,連接DN,求出∠FCD=∠EBD=∠NBD=90°,根據(jù)SAS證△EBD≌△FCD,推出ED=DF,得出等邊三角形,根據(jù)SAS證△NBD≌△FCD,推出DN=DF,∠NDB=∠FDC,求出∠EDF=∠EDN,根據(jù)SAS證△EDF≌△EDN,推出EF=EN,即可得出答案;
(2)延長AB到N,使BN=CF,連接DN,求出∠FCD=∠EBD=∠NBD=90°,根據(jù)SAS證△NBD≌△FCD,推出DN=DF,∠NDB=∠FDC,求出∠EDF=∠EDN,根據(jù)SAS證△EDF≌△EDN,推出EF=EN,即可得出答案.
解答:(1)證明:延長AB到N,使BN=CF,連接DN,
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°,
在△EBD和△FCD中
BE=CF
∠EBD=∠FCD
BD=DC
,
∴△EBD≌△FCD(SAS),
∴ED=DF,
∵∠EDF=60°,
∴△EDF是等邊三角形,
∵△EBD≌△FCD,
∴∠EDB=∠FDC,
∵在△NBD和△FCD中
BD=DC
∠NBD=∠FCD=90°
BN=CF

∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠EDB=∠FDC,
∴∠EDB=∠BDN=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中
DE=DE
∠EDF=∠EDN
DN=DF
,
∴△EDN≌△EDF(SAS),
∴EF=EN=BE+BN=BE+CF,
即△EDF是等邊三角形,BE+CF=EF.

(2)解:BE+CF=EF還成立,理由是:
延長AB到N,使BN=CF,連接DN,
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
∵在△NBD和△FCD中
BD=DC
∠NBD=∠FCD=90°
BN=CF

∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中
DE=DE
∠EDF=∠EDN
DN=DF

∴△EDN≌△EDF(SAS),
∴EF=EN=BE+BN=BE+CF,
即BE+CF=EF.
點評:本題考查了等邊三角形性質(zhì)和判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,全等三角形的性質(zhì)和判定的綜合運用,題目綜合性比較強,有一定的難度,但是證明過程類似.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

某“研究性學習小組”遇到了以下問題,請參與:
已知,△ABC是等邊三角形且內(nèi)接于⊙O,取
AB
上異于A、B的點M.設(shè)直線CA與BM相交于點K,直線CB與AM相交于點N.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)
(1)如圖1,圖2,圖3,M分別為
AB
的中點、三分之一點、四分之一點,△ABC的邊長均為2,分別測量出AK、BN的長,計算AK•BN的值(精確到0.01)并將結(jié)果填入下表中:
  △ABC的邊長  AK•BN的值 
 圖1  
 圖2  2  
 圖3  2  
(2)如圖4,當M為
AB
上任意一點時,根據(jù)(1)的結(jié)果,猜想AK•BN與AB的數(shù)量關(guān)系式為
 

(3)對(2)中提出的猜想,依圖4給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、已知,△ABC是等邊三角形,將一塊含有30°角的直角三角板DEF如圖放置,讓三角板在BC所在的直線上向右平移,如圖1,當點E與點B重合時,點A恰好落在三角形的斜邊DF上.
(1)利用圖1證明:EF=2BC;
(2)在三角板的平移過程中,在圖2中線段EB=AH是否始終成立(假定AB,AC與三角板斜邊的交點為G、H)?如果成立,請證明;如果不成立,請說明理由?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,現(xiàn)給出四個論斷:①DB=DE;②CE=CD;③BD是△ABC的中線;④△ABC是等邊三角形.請以其中的三個為條件,余下的一個為結(jié)論,組成一個正確的命題(只需寫出一種),并給予證明.
已知:
△ABC是等邊三角形
△ABC是等邊三角形
,
BD是△ABC中線
BD是△ABC中線
;
CD=CE
CD=CE

求證:
DB=DE
DB=DE

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,△ABC是等邊三角形,點D為直線BC上一點(端點B、C除外),以AD為邊作等邊△ADF,連接CF.
(1)如圖1,點D在點C右邊,①求證:BD=CF;②求∠FCD的度數(shù);
(2)如圖2,點D在點B左邊,點F在直線BC下方,請先補全圖形,并直接給出∠AFC與∠DAC之間滿足的數(shù)量關(guān)系式為
∠AFC+∠DAC=120°
∠AFC+∠DAC=120°

查看答案和解析>>

同步練習冊答案