【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖象信息,下列說法:①兩人相遇前,甲速度一直小于乙速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的說法是_________(填序號).
【答案】②③④
【解析】
根據(jù)相遇前的圖像乙的速度有變化,沒有都大于甲的速度,即可判斷①,根據(jù)出發(fā)后1小時,甲乙相遇,可判斷②,求出甲路程與時間的函數(shù),及乙在0.5到1.5小時這段時間的函數(shù),即可判斷③,由圖像甲先到到達20km處,知甲先到終點,故可判斷④.
根據(jù)相遇前的圖像乙的速度有變化,沒有都大于甲的速度,∴①錯誤;
根據(jù)出發(fā)后1小時,甲乙相遇,∴②正確,
利用甲函數(shù)經(jīng)過原點與(1,10)求出甲路程與時間的函數(shù)為y=10x,
乙在0.5到1.5小時這段時間的函數(shù)經(jīng)過(0.5,8),(1,10),求出這段時間的函數(shù)為y=4x+6,
∴1.5h時,甲的路程為15km,乙的路程為12km, 甲的行程比乙多3km,故③正確,
由圖像甲先到到達20km處,知甲先到終點,故可判斷④正確.
故填②③④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.則下列結(jié)論正確的有( )
A. ①②④ B. ①③④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2-mx+m2-2(m為大于0的常數(shù))與x軸交于A,B兩點(點A在點B的左側(cè))
(1)若點A的坐標(biāo)為(1,0)
①求拋物線的表達式;
②當(dāng)n≤x≤2時,函數(shù)值y的取值范圍是-≤y≤5-n,求n的值;
(2)將拋物線在x軸下方的部分沿x軸翻折,得到新的函數(shù)的圖象,如圖,當(dāng)2<x<3時,若此函數(shù)的值隨x的增大而減小,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 蠟燭在真空中燃燒是一個隨機事件
B. 在射擊比賽中,運動員射中靶心和沒有射中靶心的可能性相同
C. 某抽獎游戲的中獎率為,說明只有抽獎100次,才能中獎1次
D. 天氣預(yù)報明天降水概率為,表示明天下雨的可能性較大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,點E在AB上,以AE為直徑的⊙O經(jīng)過點D.
(1)求證:直線BC是⊙O的切線;
(2)若∠B=30°,AC=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖(要求:以下操作均只使用無刻度的直尺)
(1)在直角坐標(biāo)系中我們把橫、縱坐標(biāo)都為整數(shù)的點稱為整點.如圖1中點A(1,2)、B(3,4),在圖1中第一象限內(nèi)找出所有的整點P(圖上標(biāo)為P1、P2),使得點P橫、縱坐標(biāo)的平方和等于20.
(2)如圖2,是大小相等的邊長為1的正方形構(gòu)成的網(wǎng)格,A、B、C、D均為格點.請在線段AD上找一點P,并連結(jié)BP使得直線BP將四邊形ABCD的面積分為1:2兩部分,在圖中畫出線段BP,并簡要說明你的畫圖方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入-成本);
(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E在BC邊上,點F在DC的延長線上,且∠DAE=∠F.
(1)求證:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線.交BC于點E.
(1)求證:BE=EC
(2)填空:①若∠B=30°,AC=2,則DB= ;
②當(dāng)∠B= 度時,以O,D,E,C為頂點的四邊形是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com