當(dāng)x________時,數(shù)學(xué)公式的值是正的,這時x最小的整數(shù)是________.

>-3    -2
分析:根據(jù)題意得不等式>0,求出不等式的解即可得到答案.
解答:根據(jù)題意得:>0,
∴x+3>0,
解得:x>-3,
∴x最小的整數(shù)是-2.
故答案為:>-3,-2.
點評:本題主要考查對解一元一次不等式,不等式的性質(zhì),一元一次不等式的整數(shù)解等知識點的理解和掌握,能得到不等式0是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知y=
3x-1
,當(dāng)整數(shù)x=
 
時,y的值是正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在一場籃球比賽中,一球星將球出手時,球離地面
20
9
米,球的運行軌跡為拋物線,當(dāng)球運行的水平距離為4米時,球到達(dá)的最高點離地4米.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,使得球出手時的坐標(biāo)是(0,
20
9
),球運行的最高點坐標(biāo)為(4,4),求出此坐標(biāo)系中球的運行軌跡拋物線對應(yīng)的函數(shù)關(guān)系式(不要求寫取值范圍);
(2)若球投入了離地面3米高的籃筐,請求籃筐離球星(坐標(biāo)原點)的水平距離;
(3)如圖,在籃球場地面以籃筐正下方點O為圓心一些同心的半圓弧,半圓弧上有一些投籃點,相鄰的半圓之間寬度1 米,最內(nèi)半圓弧的半徑為r 米,其上每0.2π米的弧長上都是該球星投籃命中率較高的點(含半圓弧的兩端點),其它半圓上的命中率較高的點個數(shù)與最內(nèi)半圓弧上的個數(shù)相同,若該球星在(1)中投球站立的位置恰好在最外面的一個半圓弧上,求當(dāng)r為多少時,投籃的同心半圓弧中投籃命中率較高的點的個數(shù)最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+x+2.
【小題1】當(dāng)a=-1時,求此拋物線的頂點坐標(biāo)和對稱軸
【小題2】若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
【小題3】若a是負(fù)數(shù)時,當(dāng)a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當(dāng)a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0). 若點M在點N的左邊,試比較a1與a2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京門頭溝中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

已知拋物線y=ax2+x+2.
【小題1】當(dāng)a=-1時,求此拋物線的頂點坐標(biāo)和對稱軸
【小題2】若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
【小題3】若a是負(fù)數(shù)時,當(dāng)a=a1時,拋物線y=ax2+x+2與x軸的正半軸相交于點M(m,0);當(dāng)a=a2時,拋物線y=ax2+x+2與x軸的正半軸相交于點N(n,0). 若點M在點N的左邊,試比較a1與a2的大小.

查看答案和解析>>

同步練習(xí)冊答案