如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=nx+2(n≠0)的圖象與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn)A,與x軸交于點(diǎn)B,線段OA=5,C為x軸正半軸上一點(diǎn),且sin∠AOC=
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積.
【答案】分析:(1)過A點(diǎn)作AD⊥x軸于點(diǎn)D,根據(jù)已知的∠AOC的正弦值以及OA的長,利用三角形函數(shù)的定義求出AD的長,再利用勾股定理求出OD的長,即可得到點(diǎn)A的坐標(biāo),把點(diǎn)A的坐標(biāo)分別代入到反比例函數(shù)和一次函數(shù)的解析式中即可確定出兩函數(shù)的解析式;
(2)根據(jù)x軸上點(diǎn)的特征,令一次函數(shù)的y=0,求出x的值,確定出點(diǎn)B的坐標(biāo),得到線段OB的長,利用三角形的面積公式即可求出三角形AOB的面積.
解答:解:(1)過A點(diǎn)作AD⊥x軸于點(diǎn)D,
∵sin∠AOC==,OA=5,
∴AD=4,
在Rt△AOD中,由勾股定理得:DO=3,
∵點(diǎn)A在第一象限,
∴點(diǎn)A的坐標(biāo)為(3,4),
將A的坐標(biāo)為(3,4)代入y=,得4=,
∴m=12,
∴該反比例函數(shù)的解析式為y=,
將A的坐標(biāo)為(3,4)代入y=nx+2得:n=,
∴一次函數(shù)的解析式是y=x+2;

(2)在y=x+2中,令y=0,即x+2=0,
∴x=-3,
∴點(diǎn)B的坐標(biāo)是(-3,0)
∴OB=3,又AD=4,
∴S△AOB=OB•AD=×3×4=6,
則△AOB的面積為6.
點(diǎn)評:此題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,涉及的知識有:勾股定理,待定系數(shù)法求函數(shù)的解析式,三角形的面積,以及三角函數(shù)的定義,用待定系數(shù)法確定函數(shù)的解析式,是常用的一種解題方法,同學(xué)們要熟練掌握這種方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案