已知二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個交點,則m的取值范圍是


  1. A.
    m<數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    m>-數(shù)學(xué)公式且m≠0
  4. D.
    m≤數(shù)學(xué)公式且m≠0
C
分析:根據(jù)二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個交點,可得△=(2m+1)2-4m×(m-1)>0且m≠0.
解答:∵原函數(shù)是二次函數(shù),
∴m≠0
∵二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個交點,則
△=b2-4ac>0,
即(2m+1)2-4m×(m-1)>0,
4m2+4m+1-4m2+4m>0,
8m+1>0.
∴m>-
故選C.
點評:考查二次函數(shù)y=ax2+bx+c的圖象與x軸交點的個數(shù)的判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個交點的橫坐標(biāo)的倒數(shù)和為2,則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過點A(-3,6),并與x軸交于點B(-1,0)和精英家教網(wǎng)點C,頂點為P.
(1)求這個拋物線的解析式;
(2)求線段PC的長;
(3)設(shè)D為線段OC上的一點,且∠DPC=∠BAC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個二次函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-
1
2
x2+mx+
3
2
的圖象經(jīng)過點A(-3,-6),并且該拋物線與x軸交于B、C兩點,與y軸的交點為E,P為拋物線的頂點.如圖所示.
(1)求這個二次函數(shù)表達(dá)式.
(2)設(shè)點D為線段OC上的一點,且滿足∠DPC=∠BAC,說明直線PC與直線AC的位置關(guān)系,并求出點D的坐標(biāo).
(3)在(1)中的拋物線上是否存在一點F,使S△BCF=
3
4
S△BCP?若存在,請直接寫出F點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y+x2+mx+m-2,說明:無論m取何實數(shù),拋物線總與x軸有兩個交點.

查看答案和解析>>

同步練習(xí)冊答案