如圖,AB=AC,∠A=36°,AB的中垂線MD交AC于點D,交AB于點M.下列結(jié)論:
①BD是∠ABC的平分線;
②△BCD是等腰三角形;
③△AMD≌△BCD.
其中正確的有


  1. A.
    3個
  2. B.
    2個
  3. C.
    1個
  4. D.
    0個
B
分析:首先由AB的中垂線MD交AC于點D、交AB于點M,求得△ABD是等腰三角形,即可求得∠ABD的度數(shù),又由AB=AC,即可求得∠ABC與∠C的度數(shù),則可求得所有角的度數(shù),可得△BCD也是等腰三角形.
解答:∵AB的中垂線MD交AC于點D、交AB于點M,
∴AD=BD,
∴∠ABD=∠A=36°,
∵AB=AC,
∴∠ABC=∠C=72°,
∴∠DBC=∠ABC-∠ABD=36°,
∴∠ABD=∠CBD,
∴BD是∠ABC的平分線;故①正確;
∴∠BDC=180°-∠DBC-∠C=72°,
∴∠BDC=∠C=72°,
∴△BCD是等腰三角形,故②正確;
∵△AMD中,∠AMD=90°,△BCD中沒有直角,
∴△AMD與△BCD不全等,故③錯誤.
故正確的有2個.
故選:B.
點評:此題考查了線段垂直平分線的性質(zhì),等腰三角形的性質(zhì),以及全等三角形的判定等知識.此題綜合性較強,但難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)如果∠C=2∠D,那么你能得到什么結(jié)論?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
求證:△ABE∽△DCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•來賓)如圖,AB=AC,D,E分別是AB,AC上的點,下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點D,求:
(1)∠ABD的度數(shù);
(2)若△BCD的周長是m,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案